|
. | . |
|
by Staff Writers New York NY (SPX) Jul 08, 2015
Compared to other processes the innovation lies in the operating conditions. Instead of enhancing the solubility of carbon dioxide working with a pressurized system, low absorption temperature is employed. In this configuration, two main advantages can be obtained: there are no duty costs for pressurizing the system and there is no need of cleaning the absorption solvent, since the solubility of carbon dioxide in water at ambient pressure is low and any further treatment of the wastewater can be avoided. The new technology here proposed involves the use of two absorption columns: the first at atmospheric pressure for the removal of the main part of CO2 and the second one, of reduced dimension, for the final purification of biomethane. A team of researchers from the Univerit - degli Studi di Milano and Politecnico di Milano in Italy, have demonstrated the possibility to perform a first important step in the biogas upgrading to biomethane using cost-effective conditions in terms of pressure and temperature by physical absorption column technology. The work was developed both from an experimental and computational point of view. The experimental work was made by the experimental apparatus reported in the figure, while the simulation study was performed by using PRO II SIMSCI simulation software. The report will appear in the TECHNOLOGY journal. "We propose a well-known technology for the separation of CO2 from biogas mixture, but using different operating conditions relative to the traditional one. Our idea is to perform the absorption of CO2 in water by using low temperature (in the range 5 - 15C) coupled with atmospheric pressure. This technology involves the use of two absorption columns: the first at atmospheric pressure for the removal of the main part of CO2 and the second one, of reduced dimension, for the final purification of biomethane. This study demonstrated the feasibility of the first step of this approach, while ongoing research to validate the whole process of the double column configuration is now in process," says Professor Carlo Pirola, Ph.D., of the Universit - degli Stuidi di Milano and Principal Investigator of this paper. Additional co-authors of the paper included are Federico Galli, Ph.D. student, Claudia Bianchi, Ph.D., and Flavio Manenti, Ph.D. This work was funded by the Universita degli Studi di Milano and Politecnico di Milano.
Related Links World Scientific Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |