Energy News  
BIO FUEL
Pausing evolution makes bioproduction of chemicals affordable and efficient
by Staff Writers
Copenhagen, Denmark (SPX) Feb 27, 2018

illustration only

Bioproduction of chemicals using engineered microorganisms is routinely reported today, but only a few bioprocesses are functional in the large fermentation volumes that industry requires. For a longer period, the lack of successful scale-up has been one of the most important challenges for engineers to solve, in order to replace oil-derived production with biobased production of chemicals.

"One central issue is that bioproduction in large-scale fermenters is limited by toxicities and stresses that allow evolution to reduce or eliminate production of chemicals by engineered cells. This makes it expensive and challenging to commercialize biobased production systems in particular when large amounts of chemicals are needed" says Morten Sommer, Professor and Scientific Director of the Bacterial Synthetic Biology section at the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark.

A new study made by scientists from the Novo Nordisk Foundation Center for Biosustainability, just published in PNAS, suggests that cells can be engineered to overcome this evolutionary pressure and stably produce high levels of valuable chemicals.

The key is to rewire production cells to only grow when they contain high product concentration. Thus, the evolution can be circumvented and cells will be able to produce the biochemicals within an industrial time scale.

"When we rewire the production microorganism to slow down growth in case it loses production, we efficiently prevent it from performing evolution on the genes leading to production. This allows us to maintain productive cells even when the cells divide to fill up large fermentation tanks," says Peter Rugbjerg, Postdoc at the Novo Nordisk Foundation Center for Biosustainability.

Stops costly evolution
Evolution is beneficial for the cell. However, what is good for the cell may not be good for a biobased process in a fermentation tank. In a fermentation tank evolution can eliminate production - especially during large scale fermentations.

The underlying idea of the new study is to circumvent the evolution occurring in production cells by using a so-called molecular biosensor that senses the product, mevalonate, inside the production cells. The biosensor has the ability to shut down growth if the production concentration declines below a certain point.

This concept is demonstrated by the scientists and can help in driving the development towards a more sustainable society. At this point, microorganisms do not naturally produce high amounts of valuable chemicals, which demands the use of many R and D resources. An expensive process that delays the launch of new biobased processes.

"Engineered, high-level bioproduction of chemicals is not attractive for the cell that tends to grow slower and explore ways to evolve and stop production. This makes it difficult to bridge the gap between research conducted in lab shake flasks and industrial need for large cubic-meter quantities," emphasizes Peter Rugbjerg.

Biomanufacturing becomes a viable alternative
If the findings from the study are broadened out to more production cases, a major obstacle for investing in biobased production is removed. The group at the Novo Nordisk Foundation Center for Biosustainability currently collaborates with biotech companies to investigate and solve the impact of the evolution in current fermentation tanks.

"The biotech industry clearly indicate that they see a great potential in solving this problem. This study can be a step towards more efficient and affordable large-scale biomanufacturing to the benefit of society", says Morten Sommer.

Since 2011, the Novo Nordisk Foundation Center for Biosustainability has been working on developing and perfecting foundational engineering approaches for bio-manufacturing. This study is a splendid example of that.

Research paper


Related Links
Technical University of Denmark
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Digestive ability of ancient insects could boost biofuel development
York UK (SPX) Feb 27, 2018
A study of the unusual digestive system of an ancient group of insects has provided new insights into future biofuel production. Published in Nature Communications, the research reveals that the ability of some insects to efficiently digest cellulose could be exploited for industrial processes, such as the production of sustainable low carbon fuels to cut greenhouse gas emissions associated with fossil fuel use. The surprising find occurred when the team at the University of York were invest ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Avaada Power commits bllion to Uttar Pradesh solar projects

Why polymer solar cells deserve their place in the sun

New clean energy targets put South Australia on the world map

A new approach towards highly efficient and air-stable perovskite solar cells

BIO FUEL
New funding surfaces for offshore Gambia

Schlumberger and Subsea 7 propose joint venture

Crude oil prices bounce back after supply-side jitters

Seventh oil discovery made offshore Guyana

BIO FUEL
Extinct lakes of the American desert west

Even without the clean power plan, US can achieve Paris Agreement emissions reductions

Key to predicting climate change could be blowing in the wind, researchers find

Research identifies 'evolutionary rescue' areas for animals threatened by climate change

BIO FUEL
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

BIO FUEL
Evolution plays many tricks against large-scale bioproduction

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

BIO FUEL
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Huawei's AI-powered smartphone drives a Porsche

BIO FUEL
Berlin films journey into agribusiness wastelands

Chinese billionaire sees baguette goldmine in French fields

Crop-saving soil tests now at farmers' fingertips

Land use change has warmed the Earth's surface

BIO FUEL
Silk fibers could be high-tech 'natural metamaterials'

Squid skin could be the solution to camouflage material

Atomic structure of ultrasound material not what anyone expected

Sixty years of technology in space - what's changed?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.