Energy News  
BIO FUEL
New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
by Staff Writers
Daegu, South Korea (SPX) May 30, 2017


A schematic diagram showing the mechanism of the conversion of carbon dioxide into methane using the reduced titanium dioxide developed by the team. Image courtesy DGIST.

DGIST's joint research team has developed a new titania photocatalyst that converts carbon dioxide into methane three times more efficiently than the existing photocatalyst by manipulating its surface.

Carbon dioxide is a major cause of global warming. Therefore, in order to control atmostpheric carbon dioxide concentration, many countries are actively working on numerous studies to investigate effective ways to transform carbon dioxide into chemical fuels such as methane, ethane and methanol.

In particular, a high-efficiency photocatalyst is essential to help prevent the generation of secondary harmful substances when converting carbon dioxide into chemical fuels.

The research team has applied a simple magnesiothermic reduction method to synthesize oxygen-deficient titanium dioxide by removing oxygen atoms on the surface of titanium dioxide, which turns out to be a high-efficient photocatalyst that can effectively convert carbon dioxide into methane.

The research team mentions that the newly developed photocatalyst illustrates controlled band gap by removing oxygen atoms on the surface of titanium dioxide through strong reduction of magnesium and hydrogen.

This band gap control improves the light absorption and optimizes the efficient charge separation. As a result, the photocatalyst is found to increase conversion rate of carbon dioxide into methane up to threefold compared to the existing photocatalyst.

In addition, the study demonstrates that reduced titanium dioxide photocatalyst developed by DGIST team is superior to that of the existing titanium dioxide in terms of the conversion efficiency of carbon dioxide into methane.

It also highlights the excellence of the current magnesiothermic reduction method which was applied for the preparation of reduced titanium dioxide photocatalyst through a relatively simple thermoreduction method with Mg metal and hydrogen gas.

Professor Su-Il In stated "The key of this study is that we have improved the efficiency of the existing titanium dioxide photocatalyst by using a relatively simple magnesiothermic reduction method." He added "By understanding the conversion mechanism of carbon dioxide into hydrocarbon, we expect to apply it to use carbon dioxide as resource in abatement technologies."

Research paper

BIO FUEL
Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
Los Angeles CA (SPX) May 26, 2017
Plant biologists and biochemists from UCLA, UC Berkeley and UC San Francisco have produced a gold mine of data by sequencing the genome of a green alga called Chromochloris zofingiensis. Scientists have learned in the past decade that the tiny, single-celled organism could be used as a source of sustainable biofuel and that it produces a substance called astaxanthin, which may be useful fo ... read more

Related Links
Daegu Gyeongbuk Institute of Science and Technology
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Paris withdrawal sets business world at odds with Trump

European Residential Solar Gets Smarter With Huawei Fusionhome

Imec Presents Highly Accurate Model for Energy Yield Prediction of Photovoltaic Modules

Solar cells more efficient thanks to new material standing on edge

BIO FUEL
Shell keeps exploration and production focus in Australia

Turkmenistan says to export 38 bcm of gas to China this year

Stars align against crude oil prices as $50 comes under threat

Holiday demand pushes gas prices slightly higher

BIO FUEL
Hotspots show that vegetation alters climate by up to 30 percent

'Heat island' effect could double climate change costs for world's cities

Tiny shells indicate big changes to global carbon cycle

Top economists urge 'strong carbon price' in climate fight

BIO FUEL
Printed, flexible and rechargeable battery can power wearable sensors

Nanoalloys 10 times as effective as pure platinum in fuel cells

Off-the-shelf, power-generating clothes are almost here

Self-healing catalyst films for hydrogen production

BIO FUEL
A more energy-efficient catalytic process to produce olefins

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

A full life cycle assessment of second-generation biofuels

BIO FUEL
Engines fire without smoke

Daimler, VW eye China's electric car market

Continental partners with Baidu on connected cars

Researchers find computer code that Volkswagen used to cheat emissions tests

BIO FUEL
In China, maggots finish plates, and food waste

Bordeaux pins hopes for ravaged vineyards on June bloom

Bordeaux pins hopes for ravaged vineyards on June bloom

Helping plants pump iron

BIO FUEL
New method allows real-time monitoring of irradiated materials

Neutron lifetime measurements take new shape for in situ detection

Solving the riddle of the snow globe

Bamboo inspires optimal design for lightness and toughness









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.