Energy News  
BIO FUEL
New findings by Stanford chemists could lead to greener methanol production
by Mark Shwartz for Stanford News
Stanford CA (SPX) Sep 28, 2016


Stanford Professor Edward Solomon and graduate student Benjamin Snyder have published new findings on zeolites, ordinary crystalline materials that can transform methane into methanol without added heat or pressure. Image courtesy L.A. Cicero. For a larger version of this image please go here.

A team led by chemists at Stanford University has unraveled a longstanding mystery that brings them one step closer to a cleaner, more energy-efficient way to make methanol, an important industrial chemical used in products such as paints, plastics and glues.

For decades, scientists have known that certain zeolites - an ordinary crystalline material - could convert methane into methanol at room temperature, as opposed to the high temperatures and pressures needed for the current process. The question was, how do zeolites work?

"Zeolites are inexpensive and used in everything from catalysts to cat litter," said graduate student Benjamin Snyder, co-lead author of a study published in Nature about the findings. "In the 1990s, scientists showed that certain iron-containing zeolites have an outstanding ability to convert methane into methanol at room temperature. Our study finally explains how that chemical transformation occurs."

The Stanford team collaborated on the study with scientists at the University of Leuven (KU Leuven) in Belgium.

The promise of zeolites
Zeolites consist primarily of aluminum, silicon and oxygen. Their porous molecular structure makes them ideal for trapping pet odors and unwanted particles, like radioactive waste. Zeolites are also used as catalysts to make gasoline, diesel fuel and other petrochemical products.

In the 1990s, Russian scientists conducted a series of experiments on synthetic zeolites made with iron. They discovered that iron zeolites exposed to methane gas immediately start cranking out methanol, even at room temperature.

"Iron zeolites are promising catalysts for low-temperature methane conversion," said study co-author Edward Solomon, a professor of chemistry at Stanford and of photon science at SLAC National Accelerator Laboratory. "But despite nearly three decades of research, it's unclear how they work.

"Finding an efficient catalytic process for converting methane into methanol could have far-reaching economic implications."

Active sites
A big challenge for scientists is locating the active site on iron zeolite crystals where catalysis occurs.

"The main difficulty is figuring out how to differentiate an active site from an inactive 'spectator' site on the crystal," Snyder said. "Both contain iron, and that makes it very difficult to distinguish one from the other using conventional methods."

The Stanford team applied a series of advanced spectroscopy techniques developed by Solomon's group to study iron-containing proteins from plants and microbes. That approach allowed them to pinpoint the active site in the zeolites and create detailed computational models of its structure.

"We were then able to show what makes the active site so reactive," Snyder said. "We found that the iron core of the active site is locked in an unusual, constrained geometry by the zeolite crystal, and this leads to exceptional reactivity with methane."

Understanding the relationship between catalyst structure and reactivity is a crucial first step in developing environmentally friendly catalysts at scale, he added, but there are many technical hurdles to overcome. For example, most of the methanol made at room temperature gets trapped inside the porous zeolite molecule and has to be removed with water.

"Other researchers can take the design principles we define in our study and run with them," Snyder said. "Perhaps one day we'll be able to convert natural gas to methanol right at the point of extraction, without having to transport the gas to industrial-scale plants that require a massive input of energy. That technology may be many years off, but our findings represent an important step forward."

Former Stanford postdoctoral researcher Pieter Vanelderen, now at KU Leuven, is co-lead author of the study. Other authors are Lars Bottger of Stanford, and Max Bols, Simon Hallaert, Liviu Ungur, Kristine Pierloot, Robert Schoonheydt and Bert Sels of KU Leuven.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Liquid Manure Volume Reduced by Half
Vechta, Germany (SPX) Sep 21, 2016
German biogas specialist WELTEC BIOPOWER now offers a proven solution for the processing of slurry and digestate for livestock owners and biogas plant operators. The fully automated processing system "Kumac" reduces the liquid manure and digestate volume by 50 percent. In a four-stage procedure, clear water, liquid fertiliser concentrate and valuable solid matter are extracted from the source ma ... read more


BIO FUEL
Columbia Chemists Find Key to Manufacturing More Efficient Solar Cells

OPDE begins construction of a new 5MWp solar farm in the UK

Huawei Solar expands European supply center

Stacked Solar Module achieves unprecedented efficiency at 17.8 Percent

BIO FUEL
New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

Boskalis tests sustainable wood-based biofuel for marine fleet

BIO FUEL
SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

Experts anticipate significant continued reductions in wind energy costs

BIO FUEL
Closing in on high-temperature superconductivity

Corvus Energy selected to power new environmentally friendly UK hybrid ferry

Carbon-coated iron catalyst structure could lead to more-active fuel cells

Proton diffusion discovery a boost for fuel cell technologies

BIO FUEL
Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

BIO FUEL
VW says to pay US suppliers $1.2 bln over Dieselgate

Low-emissions vehicles cost less to drive, research shows

Paris bans cars along part of River Seine

Renault promises total cooperation in emissions probe

BIO FUEL
Review of studies finds genetically engineered crops are safe

China removes 13-year-old ban on some US beef products

China removes 13-year-old ban on some US beef products

How plant roots sense and react to soil flooding

BIO FUEL
Levitating nanoparticle improves torque sensing in quest for quantum theory fundamentals

Apple teams with Deloitte to push deeper into work

Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction

'Virtual orchestra' hits high notes in London









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.