Microwaving sewage waste may make it safe to use as fertilizer on crops by Gang Chen | Professor FAMU-FSU College of Engineering Tallahassee FL (The Conversation) Jan 15, 2020
My team has discovered another use for microwave ovens that will surprise you. Biosolids - primarily dead bacteria - from sewage plants are usually dumped into landfills. However, they are rich in nutrients and can potentially be used as fertilizers. But farmers can't just replace the normal fertilizers they use on agricultural soil with these biosolids. The reason is that they are often contaminated with toxic heavy metals like arsenic, lead, mercury and cadmium from industry. But dumping them in the landfills is wasting precious resources. So, what is the solution? I'm an environmental engineer and an expert in wastewater treatment. My colleagues and I have figured out how to treat these biosolids and remove heavy metals so that they can be safely used as a fertilizer.
How treatment plants clean wastewater The bacteria don't do the work for nothing. They benefit from this process by multiplying as they dine on human waste. Once water is removed from the waste, what remains is a solid lump of bacteria called biosolids. This is complicated by the fact that wastewater treatment plants accept not only residential wastewater but also industrial wastewater, including the liquid that seeps out of solid waste in landfills - called leachate - which is contaminated with toxic metals including arsenic, lead, mercury and cadmium. During the wastewater treatment process, heavy metals are attracted to the bacteria and accumulate on their surfaces. If farmers apply the biosolids at this stage, these metals will separate from the biosolids and contaminate the crop for human consumption. But removing heavy metals isn't easy because the chemical bonds between heavy metals and biosolids are very strong.
Microwaving waste releases heavy metals After a careful calculation of the energy requirement to release the heavy metals from the attached bacteria, I searched around for all the possible energy sources that can provide just enough to break the bonds but not too much to destroy the nutrients in the biosolids. That's when I serendipitously noticed the microwave oven in my home kitchen and began to wonder whether microwaving was the solution. My team and I tested whether microwaving the biosolids would break the bonds between heavy metals and the bacterial cells. We discovered it was efficient and environmentally friendly. The work has been published in the Journal of Cleaner Production. This concept can be adapted to an industrial scale by using electromagnetic waves to produce the microwaves. This is a solution that should be beneficial for many people. For instance, managers of wastewater treatment plants could potentially earn revenue by selling the biosolids instead of paying disposal fees for the material to be dumped to the landfills. It is a better strategy for the environment because when biosolids are deposited in landfills, the heavy metals seep into landfill leachate, which is then treated in wastewater treatment plants. The heavy metals thus move between wastewater treatment plants and landfills in an endless loop. This research breaks this cycle by separating the heavy metals from biosolids and recovering them. Farmers would also benefit from cheap organic fertilizers that could replace the chemical synthetic ones, conserving valuable resources and protecting the ecosystem. Is this the end? Not yet. So far we can only remove 50% of heavy metals but we hope to shift this to 80% with improved experimental designs. My team is currently conducting small laboratory and field experiments to explore whether our new strategy will work on a large scale. One lesson I would like to share with everyone: Be observant. For any problem, the solution may be just around you, in your home, your office, even in the appliances you are using.
How to make it easier to turn plant waste into biofuels New Brunswick NJ (SPX) Jan 15, 2020 Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, works well at close to room temperature, unlike conventional processes, according to a Rutgers-led study in the journal Green Chemistry. "Our pretreatment system can slash - by up to 50-fold - the use of enzym ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |