Energy News  
BIO FUEL
Cleaner air has boosted US corn and soybean yields
by Staff Writers
Stanford CA (SPX) Jul 12, 2021

A farmer plants soybeans using a no-till planter in Vincennes, Indiana.

A key factor in America's prodigious agricultural output turns out to be something farmers can do little to control: clean air. A new Stanford-led study estimates pollution reductions between 1999 and 2019 contributed to about 20 percent of the increase in corn and soybean yield gains during that period - an amount worth about $5 billion per year.

The analysis, published this week in Environmental Research Letters, reveals that four key air pollutants are particularly damaging to crops, and accounted for an average loss of about 5 percent of corn and soybean production over the study period. The findings could help inform technology and policy changes to benefit American agriculture, and underscore the value of reducing air pollution in other parts of the world.

"Air pollution impacts have been hard to measure in the past, because two farmers even just 10 miles apart can be facing very different air quality. By using satellites, we were able to measure very fine scale patterns and unpack the role of different pollutants," said study lead author David Lobell, the Gloria and Richard Kushel Director of the Center on Food Security and the Environment.

The research highlights the considerable power of satellites to illuminate pollution impacts at a scale not possible otherwise. That power could be of even greater value in countries with less access to air monitors and yield data.

Reading the air
Scientists have long known that air pollution is toxic to plant life in high doses, but not how much farmers' yields are actually hurt at current levels. The impact of pollution on agriculture overall, as well as the effects of individual pollutants, has also remained unknown.

Focusing on a nine-state region (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, South Dakota and Wisconsin) that produces roughly two-thirds of national maize and soybean output, Lobell and study co-author Jennifer Burney, an associate professor of environmental science at the University of California, San Diego, set out to measure the impact on crop yields of ozone, particulate matter, nitrogen dioxide and sulfur dioxide.

Ozone is the result of heat and sunlight-driven chemical reactions between nitrogen and hydrocarbons, such as those found in car exhaust. Particulate matter refers to large particles of dust, dirt, soot or smoke. Nitrogen dioxide and sulfur dioxide are gases released into the atmosphere primarily through the burning of fossil fuels at power plants and other industrial facilities.

"This has been a tricky problem to untangle because historically our measurements of different types of air pollutants and our measurements of agricultural yields haven't really overlapped spatially at the necessary resolution," explained Burney. "With the new high spatial resolution data, we could look at crop yields near both pollution monitors and known pollutant emissions sources. That revealed evidence of different magnitudes of negative impacts caused by different pollutants."

Lobell and Burney extended their analysis back to 1990, when Congress passed Clean Air Act amendments that resulted in significant air quality improvements across the country. The researchers looked through air pollution data from hundreds of monitoring stations around the region, federal data on power plant emissions, satellite-based observations of nitrogen dioxide around those power plants, crop yield data from federal surveys and satellite imagery, as well as weather data to account for growing season conditions known to explain crop yield variations.

Surprising findings
What Lobell and Burney discovered surprised them. Among their findings: negative effects of each of the four pollutants on corn and soybean yields, and a clear yield increase the farther away from power plants - particularly coal-burning facilities - crops were grown. The unique spatial patterns of each pollutant allowed them to disentangle the effect of each pollutant in a way that past studies could not.

The researchers estimated that total yield losses from the four pollutants averaged 5.8 percent for maize and 3.8 percent for soybean over the past two decades. Those losses declined over time as the air grew cleaner. In fact, the reduction in air pollution contributed to an estimated 4 percent growth in corn yields and 3 percent growth in soybean yields - increases that equal 19 percent of corn's overall yield gains during the timeframe and 23 percent of soybeans' overall yield gains.

"We already know that the Clean Air Act resulted in trillions of dollars of benefits in terms of human health, so I think of these billions in agricultural benefits as icing on the cake," Lobell said. "But even if it's a small part of the benefits of clear air, it has been a pretty big part of our ability to continue pushing agricultural productivity higher."

Research paper


Related Links
Stanford University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels
Champaign IL (SPX) Jun 25, 2021
Researchers report that small quantities of useful molecules such as hydrocarbons are produced when carbon dioxide and water react in the presence of light and a silver nanoparticle catalyst. Their validation study - made possible through the use of a high-resolution analytical technique - could pave the way for CO2-reduction technologies that allow industrial-scale production of renewable carbon-based fuels. The study, led by University of Illinois Urbana-Champaign chemistry professor Prashant Ja ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels

Giving a "tandem" boost to solar-powered water splitting

Singapore inaugurates new floating solar farm to meet energy needs

Could be old recycling next-generation solar panels fosters green planet

BIO FUEL
EU mission meets with Venezuela defense minister, supreme court

Swarm of autonomous tiny drones can localize gas leaks

Fossil fuel power demand has 'peaked worldwide': analysis

Canadian arctic oil spill could devastate environment, indigenous groups

BIO FUEL
Germany floods push climate change to front of election campaign

NASA, European Space Agency join forces on climate change

Yellen calls on G20 to step up climate action

Drought-hit California asks residents to cut water use by 15 percent

BIO FUEL
Plans drafted for another UK battery gigafactory

Nissan announces UK battery gigafactory, new electric car

UK auto sector embraces electric car 'gigafactories'

France hails Chinese battery factory for Renault in electric push

BIO FUEL
Cleaner air has boosted US corn and soybean yields

Switching it up to make better grass for bioenergy crops

Catalyzing the conversion of biomass to biofuel

Engineered yeast may expand possible biofuel sources

BIO FUEL
Self-driving car startup Aurora on road to going public

Will drivers get burned by EU ban on ICE cars?

UK publishes plans to decarbonise transport by mid-century

Fiat-Chrysler also charged in French 'dieselgate' case

BIO FUEL
Colorado ranchers face not just drought but rising social pressures

Spanish govt in rib-eye rumble as minister attacks meat industry

Scientists remotely control plant's pores with light

Hong Kong's urban farms sprout gardens in the sky

BIO FUEL
Energy production at Mutriku remains constant even if the wave force increases

Developing cohesive, domestic rare earth element technologies

A touch of sun heats up material scieces at ESTEC

Marine Corps corporal gets 3D-printed teeth with jaw reconstruction









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.