![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Stanford CA (SPX) Jul 12, 2021
A key factor in America's prodigious agricultural output turns out to be something farmers can do little to control: clean air. A new Stanford-led study estimates pollution reductions between 1999 and 2019 contributed to about 20 percent of the increase in corn and soybean yield gains during that period - an amount worth about $5 billion per year. The analysis, published this week in Environmental Research Letters, reveals that four key air pollutants are particularly damaging to crops, and accounted for an average loss of about 5 percent of corn and soybean production over the study period. The findings could help inform technology and policy changes to benefit American agriculture, and underscore the value of reducing air pollution in other parts of the world. "Air pollution impacts have been hard to measure in the past, because two farmers even just 10 miles apart can be facing very different air quality. By using satellites, we were able to measure very fine scale patterns and unpack the role of different pollutants," said study lead author David Lobell, the Gloria and Richard Kushel Director of the Center on Food Security and the Environment. The research highlights the considerable power of satellites to illuminate pollution impacts at a scale not possible otherwise. That power could be of even greater value in countries with less access to air monitors and yield data.
Reading the air Focusing on a nine-state region (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, South Dakota and Wisconsin) that produces roughly two-thirds of national maize and soybean output, Lobell and study co-author Jennifer Burney, an associate professor of environmental science at the University of California, San Diego, set out to measure the impact on crop yields of ozone, particulate matter, nitrogen dioxide and sulfur dioxide. Ozone is the result of heat and sunlight-driven chemical reactions between nitrogen and hydrocarbons, such as those found in car exhaust. Particulate matter refers to large particles of dust, dirt, soot or smoke. Nitrogen dioxide and sulfur dioxide are gases released into the atmosphere primarily through the burning of fossil fuels at power plants and other industrial facilities. "This has been a tricky problem to untangle because historically our measurements of different types of air pollutants and our measurements of agricultural yields haven't really overlapped spatially at the necessary resolution," explained Burney. "With the new high spatial resolution data, we could look at crop yields near both pollution monitors and known pollutant emissions sources. That revealed evidence of different magnitudes of negative impacts caused by different pollutants." Lobell and Burney extended their analysis back to 1990, when Congress passed Clean Air Act amendments that resulted in significant air quality improvements across the country. The researchers looked through air pollution data from hundreds of monitoring stations around the region, federal data on power plant emissions, satellite-based observations of nitrogen dioxide around those power plants, crop yield data from federal surveys and satellite imagery, as well as weather data to account for growing season conditions known to explain crop yield variations.
Surprising findings The researchers estimated that total yield losses from the four pollutants averaged 5.8 percent for maize and 3.8 percent for soybean over the past two decades. Those losses declined over time as the air grew cleaner. In fact, the reduction in air pollution contributed to an estimated 4 percent growth in corn yields and 3 percent growth in soybean yields - increases that equal 19 percent of corn's overall yield gains during the timeframe and 23 percent of soybeans' overall yield gains. "We already know that the Clean Air Act resulted in trillions of dollars of benefits in terms of human health, so I think of these billions in agricultural benefits as icing on the cake," Lobell said. "But even if it's a small part of the benefits of clear air, it has been a pretty big part of our ability to continue pushing agricultural productivity higher."
![]() ![]() Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels Champaign IL (SPX) Jun 25, 2021 Researchers report that small quantities of useful molecules such as hydrocarbons are produced when carbon dioxide and water react in the presence of light and a silver nanoparticle catalyst. Their validation study - made possible through the use of a high-resolution analytical technique - could pave the way for CO2-reduction technologies that allow industrial-scale production of renewable carbon-based fuels. The study, led by University of Illinois Urbana-Champaign chemistry professor Prashant Ja ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |