![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Rochester NY (SPX) Dec 07, 2015
Ethanol, which is produced from corn, is commonly-used as an additive in engine fuel as a way to reduce harmful emissions and scale back U.S. reliance on foreign oil. But since ethanol is an oxygenated fuel, its use results in a lower energy output, as well as increased damage to engines via corrosion. But now a research team, led by William Jones at the University of Rochester, has developed a series of reactions that results in the selective conversion of ethanol to butanol, without producing unwanted byproducts. "Butanol is much better than ethanol as an alternative to gasoline," said Jones, the C.F. Houghton Professor of Chemistry. "It yields more energy, is less volatile, and doesn't cause damage to engines." In fact, Jones was able to increase the amount of ethanol converted to butanol by almost 25 percent over currently used methods. Jones describes his process in a paper just published in the Journal of the American Chemical Society. Converting ethanol to butanol involves creating a larger chemical molecule with more carbon and hydrogen atoms. Although both molecules have a single oxygen atom, the higher carbon-to-oxygen ratio in butanol gives it a higher energy content, while the larger size make it less volatile. One method of converting the ethanol to butanol is the three-step Guerbet reaction, which involves temporarily giving up hydrogen atoms in an intermediate step, then adding them back in to create the final product. One problem with the Guerbet reaction is that an intermediate product--acetaldehyde--can react with both itself and the butanol product to create unwanted molecules. Jones modified the Guerbet reaction by using iridium as the initial catalyst and nickel or copper hydroxide, instead of potassium hydroxide (KOH), in the second step. While the best current conditions for the Guerbet reaction convert ethanol to butanol with about 80% selectivity, Jones' reaction produced butanol in more than 99 percent selectivity. No undesirable side products are produced. "There's still more work to do," said Jones. "We'd like to have a catalyst that's less expensive than iridium. Also, we want to make the conversion process last longer, which means figuring out what currently makes it stop." Jones says the process currently terminates after one day because one or more of the substances--the iridium, nickel, and copper--has broken down. "Once we solve the remaining problems," said Jones, "we may be able to start looking for ways to apply the conversion process in the making of renewable fuels." The research by Jones was carried out under the NSF (National Science Foundation) support of the Center for Enabling New Technologies through Catalysis, an NSF Center for Chemical Innovation program.
Related Links University of Rochester Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |