Subscribe free to our newsletters via your
. Bio Fuel News .

Team reports on US trials of bioenergy grasses
by Diana Yates, Life Sciences Editor for UI News
Champaign IL (SPX) Dec 06, 2013

Researchers grew Miscanthus x giganteus (the taller grass) and switchgrass in side-by-side field trials in seven locations in Illinois. Photo by L. Brian Stauffer.

The first long-term U.S. field trials of Miscanthus x giganteus, a towering perennial grass used in bioenergy production, reveal that its exceptional yields, though reduced somewhat after five years of growth, are still more than twice those of switchgrass (Panicum virgatum), another perennial grass used as a bioenergy feedstock. Miscanthus grown in Illinois also outperforms even the high yields found in earlier studies of the crop in Europe, the researchers found.

The average annual yield of Miscanthus grown in seven Illinois locations over a period of eight to 10 years was 10.5 tons per acre, compared with 4.5 tons per acre for switchgrass grown in side-by-side trials in Illinois, the researchers report. Miscanthus yields in Europe are about half of those reported in the Midwest.

The study took into account differences in yield that were the result of annual weather changes (primarily heat and precipitation, both of which increased growth).

The new findings appear in the journal Global Change Biology: Bioenergy. University of Illinois plant biology and Institute for Genomic Biology professor Stephen P. Long, who led the study, founded and edits the journal. The Energy Biosciences Institute at the U. of I. supported the research.

Miscanthus does almost as well in poor soils as in fertile cropland, Long said.

"That was the earlier finding in Europe and now we can confirm this for the Midwest," Long said.

"It takes a little bit longer to establish Miscanthus in poorer soils, but once it's established the yields seem to be almost as good as in the very best soils," he said. The difference in yield between richer and poorer soils was less than 10 percent.

Several growers in the U.S. pelletize Miscanthus for use as a renewable, carbon-neutral energy source. The pellets are burned to produce electricity or heat. There is a growing market for pelletized Miscanthus in the U.S. and in Europe, Long said.

"However, the expected long-term and larger market for Miscanthus is in digesting the celluloses in the biomass to sugars for fermentation to ethanol and other liquid fuels," Long said. "This would complement corn ethanol, since it would allow the use of land unsuited or marginal to corn and other row crops," he said.

Long and his colleagues calculated the total land area needed to produce enough Miscanthus to meet the U.S. Renewable Fuel Standard mandate for cellulosic ethanol production by the year 2022. They found that the RFS mandate of 16 billion gallons (60 billion liters) of cellulosic ethanol by 2022 would require 17 million acres of Miscanthus x giganteus or 39 million acres of switchgrass.

"That 39 million acres sounds like a lot and is a lot, but keep in mind that the 48 contiguous states are almost 2,000 million acres," he said. "We use only about a fifth of that in our row-crop agriculture - cotton, corn, soybean, wheat, etc. And we actually have at least 550 million acres that have been abandoned from agriculture in the last 150 years. This is not land that has been lost to urban sprawl."

Because Miscanthus grows well in poor soils, it could be planted on former agricultural lands left unused after the Dust Bowl to prevent soil erosion, Long said. Or it could be grown on Conservation Reserve Program lands, agricultural areas left fallow to avoid farm surpluses in the U.S., he said.

"We have 40 million acres in the Conservation Reserve Program," he said. "A crop like Miscanthus would be suitable for that land because it doesn't have the same erosion problems of an annual crop. You're not plowing the land every year, and you have a dense perennial root system that binds the soil.

"In fact, Miscanthus is arguably better than leaving this land fallow," he said. "Not only is it a productive use, but the rapid growth of its root system will bind and improve the soil more rapidly. As well as being productive above-ground, Miscanthus was shown in Illinois to accumulate more roots over a period of five years than fallow land or even a native prairie ecosystem."

An added advantage is that Miscanthus can be grown with little or no added fertilizer, he said. In the autumn and winter the nutrients drain out of the stems and leaves and are retained in the roots, stimulating new growth the following spring.

The recycling of nutrients is not 100 percent efficient, however, and the team wanted to know if adding nitrogen would compensate for the age-related yield declines.

In another study published in Bioenergy Research, Long and his colleagues report that adding nitrogen to Miscanthus and switchgrass significantly improved yields over time (by 25 percent and 32 percent, respectively). This eliminated the age-related declines in yield seen in switchgrass and about 40 percent of the loss found in Miscanthus. But the increases were small compared to the effects of fertilizing crops such as Zea mays (corn), and probably not large enough to justify the added cost of fertilizer, the team reported.

"The bottom line is if we simply plant Miscanthus and leave it, we don't see the same yield at year eight and year 10 that we saw in years three and five," Long said. "But we're still seeing a very high yield."

The GCB: Bioenergy paper, "Yields of Miscanthus x giganteus and Panicum virgatum Decline With Stand Age in the Midwestern USA," and the Bioenergy Research paper, "Nitrogen Fertilization Does Significantly Increase Yields of Stands of Miscanthus x giganteus and Panicum virgatum in Multi-Year Trials in Illinois," are available online or from the U. of I. News Bureau.


Related Links
Energy Biosciences Institute
Bio Fuel Technology and Application News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Companies could make the switch to wood power
Philadelphia PA(SPX) Dec 06, 2013
Some companies could economically convert their operations to wood boilers for heat and power, according to a team of forestry researchers. The conversion to wood-powered burners would make the most sense for larger commercial and industrial operations in areas that have access to large timber resources and a friendly regulatory environment, said Charles Ray, assistant professor of wood op ... read more

Dominion Virginia Power to Install Virginia's Largest Rooftop Solar Project

ET Solar Turn-key Solutions Available in Indian Market

JinkoSolar Signs Strategic Cooperation Agreement for a 200MW Project

IAMGOLD to build Solar Project in Suriname

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

Turning waste into power with bacteria and loofahs

Scientists stitch up photosynthetic megacomplex

Ethiopia spearheads green energy in sub-Saharan Africa

Small-Wind Power Market to Reach $3 Billion by 2020

Siemens achieves major step in type certification for 6MW Offshore Wind Turbine

IKEA invests in Canadian wind project

Amid growing violence, Lebanon presses on with Med gas auction

US to maintain 35,000 troops in Gulf region: Hagel

Chevron resumes shale work in Romania despite protests

Virtual Wall Could Stop Spread Of Oil Spills

French Alstom sues Chinese firm in Bulgaria over patent

India needs $2.1 trillion investment for energy: IEA

Rice U. study: It's not easy 'being green'

Founders of Envirofit Selected as Energy Innovators of the Year by The Economist

Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

How onions recognize when to bulb

Benefit of bees even bigger than thought: food study

Romania sees opportunity in China's new taste for meat

Flower Power - Researchers breed new varieties of chamomile

Cloud firm Box raises $100 mn

Laser Communication Mission Targets 2017 Launch

New Effect Couples Electricity and Magnetism in Materials

Satellite Cooling System Breakthrough Developed by Lockheed Martin Space Systems

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement