Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Bio Fuel News .




BIO FUEL
More Bang for the Biofuel Buck
by Lynn Yarris for Berkeley Lab
Berkeley CA (SPX) Nov 09, 2012


illustration only

A fermentation technique once used to make cordite, the explosive propellant that replaced gunpowder in bullets and artillery shells, may find an important new use in the production of advanced biofuels. With the addition of a metal catalyst, researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the production of acetone, butanol and ethanol from lignocellulosic biomass could be selectively upgraded to the high volume production of gasoline, diesel or jet fuel.

Using the bacterium Clostridium acetobutylicum, the Berkeley Lab researchers fermented the sugars found in biomass into the solvent acetone and the alcohols butanol and ethanol, collectively known as "ABE" products.

They then catalyzed these low carbon number products with the transition metal palladium into higher-molecular-mass hydrocarbons that are possible precursors to the three major transportation fuel molecules.

The specific type of fuel molecule produced - whether a precursor to gasoline, diesel or jet - was determined by the amount of time the ABE products resided with the palladium catalyst.

"By catalytically upgrading ABE fermentation products we're able to exploit highly efficient metabolic pathways and achieve near theoretical yields of transportation fuel precursors," says Dean Toste, a chemist who holds joint appointments with Berkeley Lab and the University of California (UC) Berkeley. "With our technique, we can obtain about a gallon of fuel from 16 pounds of the sugars that can be derived from lignocellulosic biomass."

Toste is the corresponding author of a paper published in the journal Nature titled "Integration of chemical catalysis with extractive fermentation to produce fuels." Co-authoring this paper were Pazhamalai Anbarasan, Zachary Baer, Sanil Sreekumar, Elad Gross, Joseph Binder, Harvey Blanch and Douglas Clark.

The work was supported by the Energy Biosciences Institute (EBI), a collaborative partnership between UC Berkeley, Berkeley Lab and the University of Illinois at Urbana Champaign. EBI is funded by the BP energy corporation.

Clostridium acetobutylicum is also known as the Weizmann organism after Chaim Weizmann, the chemist who first used the bacterium to ferment ABE products from starch.

The bacterium rose to prominence during World War I when it was used by the British to ferment acetone for the production of cordite. C. acetobutylicum and the ABE fermentation process continued to be widely used until the 1950s when they were replaced by cheaper petrochemical-based processes.

With rising concerns about the release of excess carbon into the atmosphere as the result of burning fossil fuels, there is a renewed scientific effort to develop advanced biofuels for transportation energy.

Synthesized from the sugars in the lignocellulosic biomass of grasses and other non-food plants, and produced in a sustainable manner, advanced biofuels could be carbon-neutral, meaning their use would not add excess carbon to the atmosphere. In addition, they would be renewable and non-polluting and represent a huge potential source of domestic jobs and revenue.

Furthermore, unlike ethanol made from corn starch or sugarcane, advanced biofuels, if they could be successfully developed and produced cost-effectively, could be dropped into today's vehicles with presumably with no impact on performance, and used in today's infrastructures with no modifications required.

"In some ways, this work is a step back in time in which a very old fermentation process is being used with some new engineering and chemistry," says co-author Blanch, one of the nation's deans of biofuels research who also holds joint appointments with Berkeley Lab and UC Berkeley.

"While there has been some progress in engineering microbes to produce advanced biofuels, the quantities produced thus far - technically, the solution's titer - tend to be very limited.

A hybrid method, combining microbial production with chemical catalysis, might provide a pathway to more efficient production of these advanced biofuels."

C. acetobutylicum ferments the sugars in lignocellulosic biomass into a product that is three parts acetone, six parts n-butanol, and one part ethanol, similar to how yeast ferments the sugars in grapes and hops into wine and beer.

From a transportation energy perspective, the two-carbon chains of ethanol, three-carbon chains of acetone and four-carbon chains of butanol are mainly useful as additives to gasoline. However, the production of acetone in combination with the alcohols makes it possible to build longer hydrocarbons chains of gasoline, diesel and jet fuel.

"The key to our technology is the ability of C. acetobutylicum to produce acetone," Toste says. "Acetone harbors a nucleophilic alpha-carbon, which is amenable to the formation of carbon bonds with the alcohols produced in ABE fermentation."

To catalyze the build-up of these shorter carbon chains into longer fuel chains - a process called "alkylation" - Toste and his co-authors tested a number of transition metal catalysts, the workhorses of modern industry that are used to initiate virtually every industrial manufacturing process involving chemistry. The best performer they tested was palladium.

"In the first reactor, we remove the low-boiling ABE products from the fermentation broth using a high-boiling extractant, such as glyceryl tributyrate," Toste says.

"This removes toxic products from the organism, allowing for higher yields of ABE and a clean stream of product for chemical catalysis, which takes place in a second reactor. While palladium on carbon was the best catalyst in these tests, we have already identified other transition metal catalysts that could be even better."

Toste believes that the integrative biological/chemical approach he and his colleague are reporting should be relatively simple to scale-up and implement on a commercial scale.

"The ABE fermentation process was established and scaled nearly a century ago," he notes, "and while the chemistry portion is less proven on scale, it relies on heterogeneous catalysis, a mainstay of industrial chemistry today."

Toste believes the combination of biological fermentation and chemical catalysis has important potential applications beyond the conversion of lignocellulosic biomass into transportation fuels and could become a powerful new technology-enabling tool.

"Many technologies today rely on either fermentation or chemical catalysis," he says. "The idea of building integrated fermentation processes involving networks of catalysts is an exciting prospect."

Adds co-author Blanch, "Integrating chemistry and fermentation is a useful way to capitalize on the best of both worlds. The chemistry described in our Nature paper is exciting because new carbon-carbon bonds are being formed between molecules and oxygen is being rejected without the need of hydrogenation. This results in very high yields."

.


Related Links
Energy Biosciences Institute
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BIO FUEL
First solely-biofuel jet flight raises clean travel hopes
Ottawa (AFP) Nov 7, 2012
The world's first flight powered entirely by bio jet fuel has raised hopes for cleaner air travel and upped the prospects of a boon for farmers whose oilseed crops could supplant kerosene. A Dassault Falcon 20 twin engine jet took off from the Canadian capital Ottawa last month to test the new jet fuel, made from 100 percent oilseed, for engine performance and emissions, aiming to make sky j ... read more


BIO FUEL
Silicon Energy Powers Municipal Buildings in Lindstrom

Ben-Gurion University develops side-illuminated ultra-efficient solar cell designs

Tecta Solar Completes Solar Photovoltaic Installations at Palmer Technology Center

The Solar Foundation Reports 13% Growth in U.S. Solar Jobs

BIO FUEL
More Bang for the Biofuel Buck

Sweet diesel! Discovery resurrects process to convert sugar directly to diesel

First solely-biofuel jet flight raises clean travel hopes

Biofuel breakthrough: Quick cook method turns algae into oil

BIO FUEL
Scotland approves 85MW Highlands wind farm

China backs suit against Obama over wind farm deal

DNV KEMA awarded framework agreement for German wind project developer SoWiTec

Sandia Labs benchmark helps wind industry measure success

BIO FUEL
Iraq needs $1 trillion to rebuild: investment head

Rice team boosts silicon-based batteries

Exxon tells Iraq it wants to sell oilfield stake

Hydro-Fracking: Fact vs. Fiction

BIO FUEL
Australia launches energy white paper

Dealing with power outages more efficiently

US military mobilizes to help restore power to New York

Sustainable cities must look beyond city limits

BIO FUEL
Green cars ready to race in 2nd Atacama solar challenge

China auto firms in 'strategic alliance' to compete

Glow-in-the-dark roads will guide drivers

Japan auto giants warn on China dispute, strong yen

BIO FUEL
Scientists Identify Insect-repelling Compounds in Jatropha

Brazil's top farmers group to open office in China

Greenpeace stages anti-GM 'toxic warning' protest

Smallholder farmers need improved stake in Nile's development

BIO FUEL
Radar Production Readiness Review For Indonesia National Air Space Surveillance Program Completed

Foxconn says cannot meet demand for iPhone 5

Credit card has LCD screen and keyboard

Sensors for the real world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement