Subscribe free to our newsletters via your
. Bio Fuel News .




BIO FUEL
Sweet Smell of Success: Researchers Boost Methyl Ketone Production
by Staff Writers
Washington DC (SPX) Dec 02, 2014


The research of Harry Beller (foreground) and Ee-Been Goh of the Joint BioEnergy Institute is boosting the production of methyl ketones by engineered strains of E.coli. Image courtesy Roy Kaltschmidt and Berkeley Lab.

Two years ago, researchers at the U.S. Department of Energy's Joint BioEnergy Institute (JBEI) engineered Escherichia coli (E. coli) bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel.

Now, after further genetic modifications, they have managed to dramatically boost the E.coli's methyl ketone production 160-fold.

"We're encouraged that we could make such a large improvement in methyl ketone production with a relatively small number of genetic modifications," says Harry Beller, a JBEI microbiologist who led this study.

"We believe we can further improve production using the knowledge gained from in vitro studies of our novel metabolic pathway."

Beller, who directs the Biofuels Pathways department for JBEI's Fuels Synthesis Division, and is also a senior scientist with Berkeley Lab's Earth Sciences Division, is the corresponding author of a paper describing this work in the journal Metabolic Engineering.

The paper is titled "Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies." Co-authors are Ee-Been Goh, Edward Baidoo, Helcio Burd, Taek Soon Lee and Jay Keasling.

Methyl ketones are naturally occurring compounds discovered more than a century ago in the aromatic evergreen plant known as rue. Since then they've been found to be common in tomatoes and other plants, as well as insects and microorganisms. Today they are used to provide scents in essential oils and flavoring in cheese and other dairy products.

Although native E. coli make virtually undetectable quantities of methyl ketones, Beller, co-author Goh and their colleagues have been able to overcome this deficiency using the tools of synthetic biology.

"In our original effort, for methyl ketone production we made two major modifications to E. coli," Beller says.

"First we modified specific steps in beta-oxidation, the metabolic pathway that E. coli uses to break down fatty acids, and then we increased the expression of a native E. coli enzyme called FadM. These two modifications combined to greatly enhance the production of methyl ketones."

In their latest effort, Beller, Goh and their colleagues made further modifications that included balancing the overexpression of two other E. coli enzymes, fadR and fadD, to increase fatty acid flux into the pathway; consolidating two plasmid pathways into one; optimizing codon usage for pathway genes not native to E. coli; and knocking out key acetate production pathways.

The results led to a methyl ketone titer of 3.4 grams/liter after approximately 45 hours of fed-batch fermentation with glucose. This is about 40-percent of the maximum theoretical yield for methyl ketones.

"Although the improved production is still not at a commercial level in the biofuel market, it is near a commercial level for use in flavor and fragrances, where certain methyl ketones are much more highly valued than they would be in the biofuel market," Beller says. "It may be possible for a company to sell a small percentage of methyl ketones in the flavor and fragrance market and use the profits to enhance the economic viability of the production of methyl ketones as biofuels."

The in vitro studies carried out by Beller and Goh provided insights into the pathway, some of which point to even further production gains. One key finding was the confirmation that a decarboxylase enzyme is not required for this methyl ketone pathway.

"Several different metabolic pathways have been developed in the past couple of years for methyl ketone production in E. coli, a couple of which use decarboxylase enzymes to catalyze the last step of the pathway," Beller says. "Our methyl ketone pathway is performing quite a bit better than these other pathways, but it does not include a native or added decarboxylase."

The in vitro studies also addressed concerns about the FadM enzyme being somewhat "promiscuous" in its hydrolyzing (thioesterase) activities. Beller and Goh found that FadM can act on intermediates in the methyl ketone pathway and effectively reduce the flux of carbon to the final methyl ketone products. However, they say that with some informed metabolic engineering, this need not be a problem and knowledge of the phenomenon could even be used to enhance production.

"In all likelihood, there is a sweet spot in the level of expression of the FadM enzyme that will allow for maximal production of methyl ketones without siphoning away metabolic intermediates," Beller says.

This research was supported by JBEI through the U.S. Department of Energy's Office of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Joint BioEnergy Institute (JBEI)
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Single-atom gold catalysts may enable cheap output of fuel and chemicals
Somerville MA (SPX) Nov 28, 2014
New catalysts designed and investigated by Tufts University School of Engineering researchers and collaborators from other university and national laboratories have the potential to greatly reduce processing costs in future fuels, such as hydrogen. The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-react ... read more


BIO FUEL
U.S. puts more cash behind solar power

Spectrolab manufactures 4 millionth space solar cell

AORA to provide Solar-Biogas Hybrid off-grid in Africa

Hanwha SolarOne to Build 230 MW Module Factory in South Korea

BIO FUEL
Boeing completes test flight with 'green diesel'

Sweet Smell of Success: Researchers Boost Methyl Ketone Production

Single-atom gold catalysts may enable cheap output of fuel and chemicals

Researchers find way to turn sawdust into gasoline

BIO FUEL
Virginia mulls offshore wind energy

Environmental group: U.S. tax credit for wind energy not enough

AREVA maintenance contract for five years renewed in the North Sea

New acreage available for U.S. offshore wind energy

BIO FUEL
Low-grade waste heat regenerates ammonia battery

Norwegian pension fund divests from 27 coal companies

Chinese power companies pursue smart grids

Lengthening the life of silicon electrodes in lithium batteries

BIO FUEL
Germany steps up efforts to reduce carbon emissions

Matched "hybrid" systems may hold key to wider use of renewable energy

Russia's Gazprombank, South African PIC Sign Cooperation Deal

Using hitech mirrors to reflect heat away from buildings

BIO FUEL
Researchers develop a magnetic levitating gear

Dongfeng, Huawei partner for Internet-enabled cars

Foreign automakers find Iranian market has gone local

US automakers aim for luxury market in China

BIO FUEL
New bird flu case in Netherlands

Alarm sounded over attacks on defenders of land rights

Circumstances are right for weed invasion to escalate

Brazil's Amazon region houses latex 'love factory'

BIO FUEL
See it, touch it, feel it

Street cleaners in New York have help from insect garbage-munchers

Laser link offers high-speed delivery

Graphene may be a the best material for body armor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.