Energy News  
BIO FUEL
Size matters for bioenergy with carbon capture and storage
by Staff Writers
Southampton UK (SPX) Jul 03, 2020

file illustration only

New research has shown that Drax power station in North Yorkshire is the optimal site for the carbon capture and storage facilities that will be needed reduce carbon emissions and achieve the targets of 2016 Paris Climate Agreement.

There has been a growing interest in the use of bioenergy with carbon capture and storage (BECCS) to achieve a net reduction in greenhouse gases. BECCS involves the combustion of biomass to generate energy, using trees and grasses grown on both agricultural land and marginal land unsuitable for food crops.

The resulting CO2 emissions are captured, compressed, and transported to suitable underground storage sites. BECCS is an example of a Negative Emission Technology (NET), with others including the direct capture of CO�2 from the air, afforestation and carbon capture by trees, and pulverisation of rocks to enhance the natural weathering process and CO2 uptake. These are controversial technologies because they are largely untested at scale and because we have limited understanding of their wider impacts on society and the environment.

The new study, led by the University of Southampton and published in the journal GCB Bioenergy, looked at six potential locations for BECCS power plants across the UK. Each site was assessed on a number of criteria including proximity to CO2 storage sites, costs of transporting biocrops as well as the potential for soil sequestration (the process by which crops remove CO2 from the atmosphere) and flood mitigation. The researchers also calculated welfare value by integrated the costs and the potential for environmental benefits.

Drax was identified as one of the most positive UK sites for the delivery of ecosystem service benefits. However, these benefits decline with size with 1 GW BECCS being significantly less beneficial to the environment than 500 MW, suggesting that future BECCS requires site-specific ecosystem service valuations to assess trade-offs and co-benefits of this NET and that smaller power plants are preferred over large infrastructures.

Achieving the Paris Agreement targets requires net zero emissions and the UK, along with other nations, plans to deploy NETs to achieve a net zero economy by 2050. BECCS features heavily in the net zero energy scenarios, estimated to be as high as 15 GW (capturing 67 Mt of CO2 per year) by the UK Committee on Climate Change. However, models currently used to generate BECCS scenarios don't quantify the environmental and social implications of BECCS and rarely consider the environment. The researchers believe they have addressed this limitation with their new model.

Professor Gail Taylor of the University of Southampton and University of California Davis who led the research said: "The novelty of this study is that for the first time we have managed to quantify the impact of BECCS at a regional scale, on the environment - showing perhaps surprisingly that BECCS can have significant positive impacts because long-lived trees are good for soil carbon and flood protection.

"However, this net benefit depends very much on where the BECCS power station is sited and consistently, in our study, declined as the capacity of the power station increased. These are very significant findings for policy makers if BECCS, as predicted, is to play a big role in the UK strategy to get to net zero by 2050".

Research paper


Related Links
University Of Southampton
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
The exhaust gas from a power plant can be recovered and used as a raw reaction material
Nagoya, Japan (SPX) Jun 21, 2020
A research group at Nagoya University has developed a new technology that can drastically conserve the energy used to capture carbon dioxide (CO2), one of the greenhouse gases, from facilities such as thermal power plants. Conventionally, a significant amount of energy (3 to 4 GJ/ton-CO2) or high temperatures exceeding 100 deg.C has been required to capture CO2 from gases exhausted from a concentrated source, and there are expectations of the development of CO2 capture technology that consumes les ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
New thin-film technology uses sustainable components for solar panels

Trina Solar supplies 187 MW of double-glass modules to EnBW for Germany's largest solar power plant

Sigora Solar, Partners Deliver Win For Homeowners In Long-Running Battle With HOA

CS Energy announces completion of the largest landfill solar-plus-storage project in Massachusetts

BIO FUEL
U.S., UAE conclude exercises in Arabian Gulf

Iraq oil exports sink to comply with OPEC cuts

Curtailed hajj compounds Saudi economic woes

Venezuela calls US warship presence 'a provocation'

BIO FUEL
Global warming has erased 6,500 years of cooling

French climate council urges referendum on making 'ecocide' a crime

Simba CubeSat to swivel from Earth to Sun to help track climate change

A world redrawn: Worry about climate not COVID, says James 'Gaia' Lovelock

BIO FUEL
New insights into the energy levels in quantum dots

Scientists develop new tool to design better fusion devices

EV battery makers up the ante as competition intensifies

Engineers develop new fuel cells with twice the operating voltage as hydrogen

BIO FUEL
The exhaust gas from a power plant can be recovered and used as a raw reaction material

Efficient laser technique can convert cellulose into biofuel

Efficient indium oxide catalysts designed for CO2 hydrogenation to methanol

Engineers find neat way to turn waste carbon dioxide into useful material

BIO FUEL
Prosecutors raid Continental in German 'dieselgate' probe

Uber in talks to buy food delivery app Postmates

Volvo recalls over 2 mn cars over seat belt fatigue

Bike maker cries foul as anti-car ad refused in France

BIO FUEL
Antibiotic use on crops isn't being monitored in most countries

U.S. beekeepers saw unsually high summertime colony losses in 2019

China dog meat festival goes ahead but virus takes a toll

China inspects food imports over virus fears

BIO FUEL
Precise measurement of liquid iron density under extreme conditions

ThinKom demonstrates IFC antenna interoperability with LEO, MEO and GEO satellites

Rocket Lab to launch Kleos Space data collecting payload

Levitating droplets allow scientists to perform 'touchless' chemical reactions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.