![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers San Francisco CA (SPX) Apr 04, 2017
Billions of pounds of plastic waste are littering the world's oceans. Now, a Ph.D. organic chemist and a sailboat captain report that they are developing a process to reuse certain plastics, transforming them from worthless trash into a valuable diesel fuel with a small mobile reactor. They envision the technology could someday be implemented globally on land and possibly placed on boats to convert ocean waste plastic into fuel to power the vessels. The researchers will present their results at the 253rd National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 14,000 presentations on a wide range of science topics. A sailor for 40 years, James E. Holm says he has watched the sea and coastline become more and more polluted. "A few years ago, I was sailing through the Panama Canal, and when I stopped at an island on the Atlantic side, I was stunned by the amount of plastic covering the beach. I thought if I had a chance to do something about it, I should." His partner, Swaminathan Ramesh, Ph.D., was driven by the desire and excitement of searching for a new "killer idea" with the power to change the world. Ramesh took early retirement in 2005 from BASF after 23 years as a research chemist and began looking for new opportunities. Ramesh formed EcoFuel Technologies and coupled his chemical knowledge with Holm's concerns about plastic wastes and ocean pollution. In the meantime, Holm had formed Clean Oceans International, a nonprofit organization. They sought to optimize a technology that can use waste hydrocarbon-based plastics as a feedstock for valuable diesel fuel. Their goal was to rid the world of plastic waste by creating a market for it. For years, Ramesh explains, pyrolysis technologies have been used to break down or depolymerize unwanted polymers, such as plastic wastes, leaving a hydrocarbon-based fuel. But the process usually calls for complex and costly refining steps to make the fuel useable. Ramesh set out to change the game and developed a metallocene catalyst deposited on a porous support material that, coupled with a controlled pyrolysis reaction, yields diesel fuels directly without further refining. It is also cost-effective on a small scale, runs at lower temperatures and is mobile. "The catalyst system also allows us to perform the pyrolysis as a continuous-feed process and shrink the footprint of the whole system," Ramesh says. "We can scale the capacity to handle anywhere from 200 pounds per 10-hour day to 10,000 or more pounds per 10-hour day. Because of its small size, we also can take the technological process to where the plastic wastes are." The whole system can fit in a 20-foot shipping container or on the back of a flat-bed truck, Holm says. The next step, they say, is to show the technology works well and that it can create a useable drop-in diesel fuel. They will soon conduct a demonstration project for the government of the city of Santa Cruz, California. Officials there are interested in implementing the technology to address waste plastics that currently cannot be recycled, as well as to formulate diesel fuel the city can use for its vehicles, Holm adds. "If we can get people around the world to pick this up and use it to shift waste plastics to fuel and make money, we are winning," Holm says. "We can even eliminate plastic waste before it gets to the oceans by creating value for it locally on a global basis."
![]() New Delhi (AFP) March 31, 2017 Oil giant Shell opened Friday a high-tech research hub in southern India that is hoping to pioneer the green energy of the future, including ways to transform farm and city waste into clean fuel. The sprawling facility in the Indian tech capital Bangalore will house 1,500 experts under one roof as Shell expands its research and development operations in Asia. The 21-hectare hub will host ... read more Related Links American Chemical Society Bio Fuel Technology and Application News
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |