Energy News  
BIO FUEL
Rice U.'s one-step catalyst turns nitrates into water and air
by Staff Writers
Houston TX (SPX) Jan 09, 2018


Rice University's indium-palladium nanoparticle catalysts clean nitrates from drinking water by converting the toxic molecules into air and water.

Engineers at Rice University's Nanotechnology Enabled Water Treatment (NEWT) Center have found a catalyst that cleans toxic nitrates from drinking water by converting them into air and water.

The research is available online in the American Chemical Society journal ACS Catalysis.

"Nitrates come mainly from agricultural runoff, which affects farming communities all over the world," said Rice chemical engineer Michael Wong, the lead scientist on the study.

"Nitrates are both an environmental problem and health problem because they're toxic. There are ion-exchange filters that can remove them from water, but these need to be flushed every few months to reuse them, and when that happens, the flushed water just returns a concentrated dose of nitrates right back into the water supply."

Wong's lab specializes in developing nanoparticle-based catalysts, submicroscopic bits of metal that speed up chemical reactions. In 2013, his group showed that tiny gold spheres dotted with specks of palladium could break apart nitrites, the more toxic chemical cousins of nitrates.

"Nitrates are molecules that have one nitrogen atom and three oxygen atoms," Wong explained.

"Nitrates turn into nitrites if they lose an oxygen, but nitrites are even more toxic than nitrates, so you don't want to stop with nitrites. Moreover, nitrates are the more prevalent problem.

"Ultimately, the best way to remove nitrates is a catalytic process that breaks them completely apart into nitrogen and oxygen, or in our case, nitrogen and water because we add a little hydrogen," he said.

"More than 75 percent of Earth's atmosphere is gaseous nitrogen, so we're really turning nitrates into air and water."

Nitrates are toxic to infants and pregnant women and may also be carcinogenic. Nitrate pollution is common in agricultural communities, especially in the U.S. Corn Belt and California's Central Valley, where fertilizers are heavily used, and some studies have shown that nitrate pollution is on the rise due to changing land-use patterns.

Both nitrates and nitrites are regulated by the Environmental Protection Agency, which sets allowable limits for safe drinking water. In communities with polluted wells and lakes, that typically means pretreating drinking water with ion-exchange resins that trap and remove nitrates and nitrites without destroying them.

From their previous work, Wong's team knew that gold-palladium nanoparticles were not good catalysts for breaking apart nitrates. Co-author Kim Heck, a research scientist in Wong's lab, said a search of published scientific literature turned up another possibility: indium and palladium.

"We were able to optimize that, and we found that covering about 40 percent of a palladium sphere's surface with indium gave us our most active catalyst," Heck said.

"It was about 50 percent more efficient than anything else we found in previously published studies. We could have stopped there, but we were really interested in understanding why it was better, and for that we had to explore the chemistry behind this reaction."

In collaboration with chemical engineering colleagues Jeffrey Miller of Purdue University and Lars Grabow of the University of Houston, the Rice team found that the indium speeds up the breakdown of nitrates while the palladium apparently keeps the indium from being permanently oxidized.

"Indium likes to be oxidized," Heck said.

"From our in situ studies, we found that exposing the catalysts to solutions containing nitrate caused the indium to become oxidized. But when we added hydrogen-saturated water, the palladium prompted some of that oxygen to bond with the hydrogen and form water, and that resulted in the indium remaining in a reduced state where it's free to break apart more nitrates."

Wong said his team will work with industrial partners and other researchers to turn the process into a commercially viable water-treatment system.

"That's where NEWT comes in," he said.

"NEWT is all about taking basic science discoveries and getting them deployed in real-world conditions. This is going to be an example within NEWT where we have the chemistry figured out, and the next step is to create a flow system to show proof of concept that the technology can be used in the field."

NEWT is a multi-institutional engineering research center based at Rice that was established by the National Science Foundation in 2015 to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people and make U.S. energy production more sustainable and cost-effective.

NEWT is expected to leverage more than $40 million in federal and industrial support by 2025 and is focused on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.

Research paper

BIO FUEL
A fossil fuel technology that doesn't pollute
Columbus OH (SPX) Jan 03, 2018
Engineers at The Ohio State University are developing technologies that have the potential to economically convert fossil fuels and biomass into useful products including electricity without emitting carbon dioxide to the atmosphere. In the first of two papers published in the journal Energy and Environmental Science, the engineers report that they've devised a process that transforms shal ... read more

Related Links
Rice University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Standardizing perovskite aging measurements

Siting solar, sparing prime agricultural lands

New technique allows rapid screening for new types of solar cells

Laser Evaporation Technology to Create New Solar Materials

BIO FUEL
North Sea decommissioning sparks paperwork questions

Energy sector analysis sees deepwater attraction

Rig counts mixed, though U.S. offshore steady

Oil rally finally slips on the first Friday of 2018

BIO FUEL
Quarter of land will be drier under 2 C warming: study

Curbing climate change

Droughts and ecosystems are determined by the interaction of two climate phenomena

Space Climate Observatory agreed ahead of One Planet Summit in Paris

BIO FUEL
HP recalls computer batteries over fire risk

Modeling helped to improve the configuration of an autonomous heat supply unit

Exploring electrolysis for energy storage

Thermoelectric power generation at room temperature: Coming soon?

BIO FUEL
A catalytic balancing act

Locating the precise reaction path: Methane dissociation on platinum

A fossil fuel technology that doesn't pollute

A new strategy for efficient hydrogen production

BIO FUEL
U.S. vehicle sales skew gas mileage average lower

Startup unveils 'car of future' for $45,000

Tesla again delays target for ramping up Model 3 output

China's Didi buys Brazil's 99 in new Uber challenge; BlackBerry, Baidu in autonomous vehicle deal

BIO FUEL
Warming to force winemakers, growers to plant different varieties

Speed breeding technique sows seeds of new green revolution

Speed breeding breakthrough to boost crop research

Rust stemmed for wheat

BIO FUEL
Nature's smallest rainbows, created by peacock spiders, may inspire new optical technology

Accelerated analysis of the stability of complex alloys

Russian scientists suggested a new technology for creating magnet micro-structures

Single metalens focuses all colors of the rainbow in one point









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.