![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Golden CO (SPX) Jul 06, 2018
An international research team, including scientists from the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), has discovered and characterized a new family of cytochrome P450 enzymes that is critical to improving the conversion of lignin - one of the main components of plants - into valuable products such as nylon, plastics, and chemicals. Cytochrome P450s are some of the most versatile enzymes on the planet. These proteins are found in the human body and are involved in many metabolic pathways, including metabolizing potentially toxic compounds. Cytochrome P450s have been studied for decades and have been classed into Families A through M.
Three men stand in a laboratory. Learning about the structure and function of enzymes helps scientists improve the microbes and thus enhance processes like the biological conversion of lignin from plant biomass into valuable products. And P450s are a great place to start. "Cytochrome P450s have been engineered to perform myriad functions important for biotechnological applications," said Gregg Beckham a Senior Research Fellow at NREL and one of the authors of the paper. "They've been engineered to be faster, better, specialists, or generalists. They are a versatile and highly plastic scaffold for biotechnology, and decades of directed evolution and protein engineering already have been done to tweak cytochrome P450s." The discovery of the new class of cytochrome P450s came about when Beckham asked Christopher Johnson, a molecular biologist in NREL's National Bioenergy Center and a co-author of the study, to find an enzyme that could convert guaiacol to catechol. Guaiacol represents one of the simplest building blocks of lignin, and catechol can be broken down into muconate, which is a platform chemical important in the production of several types of bioplastics. Johnson found a cytochrome P450 that converts guaiacol to catechol in a single step. To make it perform better, the team needed to understand how the enzyme works, which led to the team's efforts to establish its molecular structure, and thus the discovery of this new P450 family. Researchers studied how the enzyme interacts with its products and substrate and quickly realized that this cytochrome P450 is more than a guaiacol specialist; it's a generalist that can perform demethylation on a variety of substances. Demethylation is the simple chemistry of removing a methyl group, and the microbial conversion of lignin relies on this critical reaction. "This new cytochrome P450 enzyme is promiscuous and can degrade a lot of different lignin-based substrates," said Beckham. "That's good because it means that it can then be engineered to be a specialist for a specific molecule." In addition to NREL, this multidisciplinary collaboration - covering a range of expertise in structural biology, biochemistry, molecular dynamics, and quantum chemistry - includes researchers from Montana State University, University of Georgia, the University of California at Los Angeles, Brazil's University of Campinas, and the United Kingdom's University of Portsmouth. "This team from around the world has developed a new paradigm for doing one of the most important reactions in microbial lignin conversion - aromatic O-demethylation - which enables conversion of lignin into value-added products," said Beckham. "And now we have one of the most well-known, versatile, engineerable, and evolvable classes of enzymes ready to go as a foothold for biotechnology to move forward and make the enzyme better."
![]() ![]() I.Coast studies first cocoa-fired power station Abidjan (AFP) July 2, 2018 Abidjan wants to build the world's first biomass power station fired by cocoa production waste, Ivory Coast and US officials said Monday. If the 235-million-euro (273-million-dollar) scheme gets the go-ahead, Ivory Coast, the world's top cocoa grower, could go on to construct nine more power stations burning cocao waste. The first plant could be up and running in 2023, said Yapi Ogou, the head of the Soci�t� des �nergies nouvelles (Soden or New Energies Company) which is in charge of the project ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |