Energy News  
BIO FUEL
Researchers develop technology to harness energy from mixing of freshwater and seawater
by Staff Writers
Stanford CA (SPX) Jul 31, 2019

File image

Salt is power. It might sound like alchemy, but the energy in places where salty ocean water and freshwater mingle could provide a massive source of renewable power. Stanford researchers have developed an affordable, durable technology that could harness this so-called blue energy.

The paper, recently published in American Chemical Society's ACS Omega, describes the battery and suggests using it to make coastal wastewater treatment plants energy-independent.

"Blue energy is an immense and untapped source of renewable energy," said study coauthor Kristian Dubrawski, a postdoctoral scholar in civil and environmental engineering at Stanford. "Our battery is a major step toward practically capturing that energy without membranes, moving parts or energy input."

Dubrawski works in the lab of study co-author Craig Criddle, a professor of civil and environmental engineering known for interdisciplinary field projects of energy-efficient technologies.

The idea of developing a battery that taps into salt gradients originated with study coauthors Yi Cui, a professor of materials science and engineering, and Mauro Pasta, a postdoctoral scholar in materials science and engineering at the time of the research. Applying that concept to coastal wastewater treatment plants was Criddle's twist, born of his long experience developing technologies for wastewater treatment.

The researchers tested a prototype of the battery, monitoring its energy production while flushing it with alternating hourly exchanges of wastewater effluent from the Palo Alto Regional Water Quality Control Plant and seawater collected nearby from Half Moon Bay. Over 180 cycles, battery materials maintained 97 percent effectiveness in capturing the salinity gradient energy.

The technology could work any place where fresh and saltwater intermix, but wastewater treatment plants offer a particularly valuable case study. Wastewater treatment is energy-intensive, accounting for about three percent of the total U.S. electrical load.

The process - essential to community health - is also vulnerable to power grid shutdowns. Making wastewater treatment plants energy independent would not only cut electricity use and emissions but also make them immune to blackouts - a major advantage in places such as California, where recent wildfires have led to large-scale outages.

Water power
Every cubic meter of freshwater that mixes with seawater produces about .65 kilowatt-hours of energy - enough to power the average American house for about 30 minutes. Globally, the theoretically recoverable energy from coastal wastewater treatment plants is about 18 gigawatts - enough to power more than 1,700 homes for a year.

The Stanford group's battery isn't the first technology to succeed in capturing blue energy, but it's the first to use battery electrochemistry instead of pressure or membranes. If it works at scale, the technology would offer a more simple, robust and cost-effective solution.

The process first releases sodium and chloride ions from the battery electrodes into the solution, making the current flow from one electrode to the other. Then, a rapid exchange of wastewater effluent with seawater leads the electrode to reincorporate sodium and chloride ions and reverse the current flow. Energy is recovered during both the freshwater and seawater flushes, with no upfront energy investment and no need for charging. This means that the battery is constantly discharging and recharging without needing any input of energy.

Durable and affordable technology
While lab tests showed power output is still low per electrode area, the battery's scale-up potential is considered more feasible than previous technologies due to its small footprint, simplicity, constant energy creation and lack of membranes or instruments to control charge and voltage.

The electrodes are made with Prussian Blue, a material widely used as a pigment and medicine, that costs less than $1 a kilogram, and polypyrrole, a material used experimentally in batteries and other devices, which sells for less than $3 a kilogram in bulk.

There's also little need for backup batteries, as the materials are relatively robust, a polyvinyl alcohol and sulfosuccinic acid coating protects the electrodes from corrosion and there are no moving parts involved. If scaled up, the technology could provide adequate voltage and current for any coastal treatment plant. Surplus power production could even be diverted to a nearby industrial operation, such as a desalination plant.

"It is a scientifically elegant solution to a complex problem," Dubrawski said. "It needs to be tested at scale, and it doesn't address the challenge of tapping blue energy at the global scale - rivers running into the ocean - but it is a good starting point that could spur these advances."

To assess the battery's full potential in municipal wastewater plants, the researchers are working on a scaled version to see how the system functions with multiple batteries working simultaneously.

Research paper


Related Links
Stanford University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Vampire algae killer's genetic diversity poses threat to biofuels
Los Alamos NM (SPX) Jul 24, 2019
New DNA analysis has revealed surprising genetic diversity in a bacterium that poses a persistent threat to the algae biofuels industry. With the evocative name Vampirovibrio chlorellavorus, the predatory pest sucks out the contents of the algae cells (thus the vampire reference) and reduces a productive, thriving, green algae pond to a vat of rotting sludge. "DNA sequences show what are likely different species, suggesting a much larger diversity in this family than we originally assumed," said B ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Breakthrough material could lead to cheaper, more widespread solar panels and electronics

Organic solar cells will last 10 years in space

Solar power with a free side of drinking water

Nanobowl arrays endow perovskite solar cells with iridescent colors

BIO FUEL
Could Baghdad-Arbil end Iraq's protacted oil dispute?

Iran warns new British PM it will 'protect' Gulf waters

Iran forces warned off UK warship during tanker seizure: audio

Britain rules out seized tanker swap with Iran

BIO FUEL
20th-century warming 'unmatched' in 2,000 years

Politics and finance dog EU climate zero efforts

More 'reactive' land surfaces cooled the Earth down

Dramatic warming projected in world's major cities by 2050

BIO FUEL
Harvesting energy from the human knee

A new material for the battery of the future, made in UCLouvain

Materials scientists uncover source of degradation in sodium batteries

High-performance flow batteries offer path to grid-level renewable energy storage

BIO FUEL
Research shows black plastics could create renewable energy

Vampire algae killer's genetic diversity poses threat to biofuels

Left out to dry: A more efficient way to harvest algae biomass

Symbiotic upcycling: Turning 'low value' compounds into biomass

BIO FUEL
Automakers reach emissions deal with California, in rebuff to Trump

China's BAIC takes 5% stake in Daimler: German carmaker

GM's Cruise delays launch of robo-taxis

Car boom brings gridlock misery to 'green and happy' Bhutan

BIO FUEL
Lavender back in fashion with French farmers

Swine fever sends China's pork prices, imports soaring

China importers seek to lift tariffs on US farm goods: state media

ORNL scientists make fundamental discovery to creating better crops

BIO FUEL
Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.