![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Lausanne, Switzerland (SPX) Sep 21, 2018
Producing fuels and chemicals from biomass (wood, grasses, etc.) is one of the most promising solutions for building a renewable economy. The process involves breaking down, or "deconstructing", plants to produce single carbohydrates, mostly in the form of simple sugars like xylose and glucose. But even though these sugars are valuable, current processes for plant deconstruction often end up degrading them. Now, the lab of Jeremy Luterbacher at EPFL has developed a chemical method that stabilizes simple sugars and prevents them from being degraded. This method could mean that chemists no longer have to balance deconstruction of the plant with avoiding degradation of the product. The new method changes the chemical susceptibility of the sugars to dehydration and degradation by latching aldehydes onto them. The process is reversible, meaning that that the sugars can be retrieved after deconstruction. The chemists tried their method on beechwood. First, they turned it into pulp using a paper-making technique called organosolv, which solubilizes wood into acetone or ethanol. But in order to latch aldehydes onto the sugars, the scientists mixed the beechwood with formaldehyde. With this approach, they were able to recover over 90% of xylose sugars as opposed to only 16% xylose without formaldehyde. When they broke down the remaining pulp to glucose, the carbohydrate yield was over 70%, compared to 28% without formaldehyde. "Before, people had always been looking for often expensive systems that limited sugar degradation," says Jeremy Luterbacher. "With stabilization, you worry less about this degradation and this frees you up to develop cheaper and faster transformations for plants, potentially accelerating the emergence of renewable consumer products." Ydna M. Questell-Santiago, Raquel Zambrano-Valera, Masoud Talebi Amiri, Jeremy S. Luterbacher. Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nature Chemistry 17 September 2018. DOI: 10.1038/s41557-018-0134-4
![]() ![]() Europe's renewable energy initiative is bad news for forest health, scientists argue Washington (UPI) Sep 12, 2018 The European Union wants to double its use of renewable energy by 2030. To meet the target, the European Union's Renewable Energy Directive has designated wood as a low-carbon fuel source. That's a bad idea, according to a new paper published this week in the journal Nature. According to researchers' calculations, an increase in the use of wood as fuel will boost greenhouse gas emissions and decimate forests. It's true that wood regrows, scientists acknowledge, but in the short-term, lar ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |