Energy News  
BIO FUEL
New core-shell catalyst for ethanol fuel cells
by Staff Writers
Upton NY (SPX) Jun 10, 2019

A close-up of the platinum/iridium (green/blue) shell over a gold nanoparticle core (yellow), showing how this catalyst cleaves the carbon-carbon (gray) bonds in ethanol while initially leaving hydrogen atoms attached. The hydrogen protects the carbon in the early stages of the reaction, preventing the formation of catalyst-poisoning carbon monoxide, which enables complete oxidation and the release of 12 electrons.

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources. The catalyst, described in the Journal of the American Chemical Society, steers the electro-oxidation of ethanol down an ideal chemical pathway that releases the liquid fuel's full potential of stored energy.

"This catalyst is a game changer that will enable the use of ethanol fuel cells as a promising high-energy-density source of 'off-the-grid' electrical power," said Jia Wang, the Brookhaven Lab chemist who led the work. One particularly promising application: liquid fuel-cell-powered drones.

"Ethanol fuel cells are lightweight compared to batteries. They would provide sufficient power for operating drones using a liquid fuel that's easy to refill between flights - even in remote locations," Wang noted.

Much of ethanol's potential power is locked up in the carbon-carbon bonds that form the backbone of the molecule. The catalyst developed by Wang's group reveals that breaking those bonds at the right time is the key to unlocking that stored energy.

"Electro-oxidation of ethanol can produce 12 electrons per molecule," Wang said. "But the reaction can progress by following many different pathways."

Most of these pathways result in incomplete oxidation: The catalysts leave carbon-carbon bonds intact, releasing fewer electrons. They also strip off hydrogen atoms early in the process, exposing carbon atoms to the formation of carbon monoxide, which "poisons" the catalysts' ability to function over time.

"The 12-electron full oxidation of ethanol requires breaking the carbon-carbon bond at the beginning of the process, while hydrogen atoms are still attached, because the hydrogen protects the carbon and prevents the formation of carbon monoxide," Wang said. Then, multiple steps of dehydrogenation and oxidation are needed to complete the process.

The new catalyst - which combines reactive elements in a unique core-shell structure that Brookhaven scientists have been exploring for a range of catalytic reactions - speeds up all of these steps.

To make the catalyst, Jingyi Chen of the University of Arkansas, who was a visiting scientist at Brookhaven during part of this project, developed a synthesis method to co-deposit platinum and iridium on gold nanoparticles. The platinum and iridium form "monoatomic islands" across the surface of the gold nanoparticles. That arrangement, Chen noted, is the key that accounts for the catalyst's outstanding performance.

"The gold nanoparticle cores induce tensile strain in the platinum-iridium monoatomic islands, which increases those elements' ability to cleave the carbon-carbon bonds, and then strip away its hydrogen atoms," she said.

Zhixiu Liang, a Stony Brook University graduate student and the first author of the paper, performed studies in Wang's lab to understand how the catalyst achieves its record-high energy conversion efficiency. He used "in situ infrared reflection-absorption spectroscopy" to identify the reaction intermediates and products, comparing those produced by the new catalyst with reactions using a gold-core/platinum-shell catalyst and also a platinum-iridium alloy catalyst.

"By measuring the spectra produced when the infrared light is absorbed at different steps in the reaction, this method allows us to track, at each step, what species have been formed and how much of each product," Liang said. "The spectra revealed that the new catalyst steers ethanol toward the 12-electron full oxidation pathway, releasing the fuel's full potential of stored energy."

The next step, Wang noted, is to engineer devices that incorporate the new catalyst.

The mechanistic details revealed by this study may also help guide the rational design of future multicomponent catalysts for other applications.

Research paper


Related Links
Brookhaven National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Table scraps can be used to reduce reliance on fossil fuels
Waterloo, Canada (SPX) May 27, 2019
Wasted food can be affordably turned into a clean substitute for fossil fuels. New technology developed by researchers at the University of Waterloo engineers natural fermentation to produce a biodegradable chemical that can be refined as a source of energy. The chemical could also be used to replace petroleum-based chemicals in a host of products including drugs and plastic packaging. "People like me, environmental biotechnologists, look at food waste as a tremendous resource," said H ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
New York state winters could pose solar farm 'ramping' snag for power grid

New solar panel dataset helps cities make power grids more safe, reliable

ASU team throws new light on photosynthetic supercomplex structure

Solar cell defect mystery solved after decades of global effort

BIO FUEL
Major step forward in the production of 'green' hydrogen

Aircraft from Lincoln CSG, B-52H conduct joint exercises in Arabian Sea

ExxonMobil staff to return to work in Iraq: ministry

Swapping water for CO2 could make fracking greener and more effective

BIO FUEL
UK-led mission to improve climate change forecasts added to ESA mission

Merkel govt vows climate action as voters turn up heat

Warming Arctic to blame for increase in extreme weather

Merkel team talks climate as voters turn up heat

BIO FUEL
Scientists found a way to increase the capacity of energy sources for portable electronics

Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

Flexible generators turn movement into energy

Wearable cooling and heating patch could serve as personal thermostat and save energy

BIO FUEL
Table scraps can be used to reduce reliance on fossil fuels

Where there's waste there's fertilizer

When biodegradable plastic isn't

Electrode's 'hot edges' convert CO2 gas into fuels and chemicals

BIO FUEL
BMW partners Jaguar Land Rover to develop electric engine

US Postal Service to launch test of self-driving trucks

Tata Motors profits fall 47% amid Jaguar Land Rover China slowdown

Flying cars mooted for Paris' public transport network

BIO FUEL
The real future food is lab-grown insect meat

Despite culls, import bans, swine fever to hit pork market for years

Striking French workers block world's biggest Nutella plant

Brazil suspends beef exports to China over 'atypical' mad cow case

BIO FUEL
China steps up threat to deprive US of rare earths

Chemists develop faster way to purify elements

Scientists offer designer 'big atoms' on demand

Origami-inspired materials could soften the blow for reusable spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.