![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Golden CO (SPX) Oct 21, 2020
Popular wisdom holds that tall, fast-growing trees are best for biomass, but new research by two U.S. Department of Energy National Laboratories reveals the size of trees is only part of the equation. Of equal economic importance, according to scientists from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL), is the amount of sugars that can be produced from the ligno-cellulosic biomass that can be converted into fuels. In the production of biofuels from woody biomass, feedstocks represent a significant expense with costs incurred for planting, harvesting, and transporting the trees. Growers typically look at how many trees they can plant per acre with little consideration given to how much fuel those trees will produce or the quality of that fuel. The researchers analyzed 900 samples of black cottonwood trees grown in Oregon to determine how variations in their size and composition affect feedstock quality and biorefinery economics. "Those differences do make an economic difference," said Brian Davison, a biochemical engineer with ORNL and a lead on the project. The findings are detailed in a new paper, "Economic Impact of Yield and Composition Variation in Bioenergy Crops: Populus trichocarpa," published in the journal Biofuels, Bioproducts and Biorefining. In addition to Davison, the other co-authors are Renee Happs, Andrew Bartling, Crissa Doeppke, Anne Harman-Ware, Mary Biddy, and Mark Davis from NREL; and Erin Webb, Robin Clark, Jin-Gui Chen, Gerald Tuskan, and Wellington Muchero from ORNL. The amount of fuel produced per acre each year and the minimum fuel selling price (MFSP) are most strongly connected to the size of a tree. But when considering the largest 25% of trees, the size and sugar content were of nearly identical importance to the MFSP, the researchers found. "Over the long run, in the case of a biorefinery, that adds up to millions of dollars by taking the genotypes that give you the most sugar," said Happs, an analytical chemist at NREL and lead author of the paper. The scientists chose the black cottonwood tree to study because of its fast growth and its prevalence across North America. The tree can be ready to harvest after about seven years from planting. In addition to the sugar content, the researchers also analyzed the amount of lignin, which forms rigid cell walls and bark that is difficult to break down. The analyses informed a techno-economic analysis of using the black cottonwood as a biofuel feedstock. The trees with the best attributes can be cloned for rapid propagation. "We can also breed for the key genes to increase both sugar content and growth," Davison said. "We observed that there was no correlation between composition and size - hinting that we could selectively breed for maximizing both of these attributes simultaneously without trading one for the other," said Bartling, who conducted the techno-economic analysis of the poplar samples. Genetic engineering may allow for further improvement of sugar content. The researchers used computer modeling to evaluate a hypothetical scenario involving two clones in which the sugar was increased by 5% among a smaller set of the trees. The additional sugar content reduced the MFSP, highlighting how composition can begin to compensate for economic losses in smaller trees - perhaps in a region where poor conditions may not allow them to grow as large.
Research Report: "Economic Impact of Yield and Composition Variation in Bioenergy Crops: Populus trichocarpa"
![]() ![]() Sludge-powered bacteria generate more electricity, faster Thuwal, Saudi Arabia (SPX) Oct 20, 2020 Changing the surface chemistry of electrodes leads to the preferential growth of a novel electroactive bacterium that could support improved energy-neutral wastewater treatment. To grow, electroactive bacteria break down organic compounds by transferring electrons to solid-state substrates outside their cells. Scientists have utilized this process to drive devices, such as microbial electrochemical systems, where the bacteria grow as a film on an electrode, breaking down the organic compounds in w ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |