![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Joensuu, Finland (SPX) Jun 07, 2016
A novel method for adding liquid by-products from the wood industry into wood-plastic composites (WPCs) prior to manufacturing was developed in a new study from the University of Eastern Finland. The study also discovered that proton-transfer-reaction mass-spectrometry (PTR-MS) is a suitable method for measuring the amounts of volatile organic compounds, VOCs, released from WPCs. There is an increasing need to find new alternatives for crude oil based materials such as plastics. WPCs are natural fibre composites with properties of both plastic and wood. These composites are used, for example, in buildings and in the manufacture of automobiles. It is estimated that the production of WPCs will experience an annual growth of 14% between 2014 and 2019. Wood and plastics are very different materials in terms of their chemical properties, which is why additives are used in WPCs to enhance the compatibility of these constituents. Additives are also used to improve composites' water absorbing and weather resistance properties, among other things. However, some additives are rather expensive and their incorporation into WPCs is not straightforward. Thus, WPCs are in need of novel and effective additives that are based on renewable resources.
Putting waste to good use - liquids separated from wood as additives in WPCs The findings of the study show that liquids separated from wood can be added to WPC granulates using the method developed in the study. Composites treated with liquids performed better in injection moulding and the samples of each material type were very homogeneous. Furthermore, the addition of liquids extracted from wood significantly reduced the water absorption of the composites and in some cases improved their mechanical properties.
PTR-MS gives information about VOCs quickly Clear and consistent differences between different WPCs and amounts of VOCs released were found using PTR-MS. For example, significant amounts of VOCs were released right after manufacturing. The amounts of VOCs released grew after the addition of liquid by-products from biochar production and heat treatment of wood; however, the emission levels of harmful compounds did not increase to a level that would be hazardous. Research paper: "Effects Of Thermally Extracted Wood Distillates On The Characteristics Of Wood-Plastic"
Related Links University of Eastern Finland Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |