Energy News  
BIO FUEL
Key enzyme for production of second-generation ethanol discovered in Brazilian Amazon
by Staff Writers
Sao Paulo, Brazil (SPX) May 18, 2018

"We know the saccharification rate falls as the proportion of saccharification product rises, because the presence of the product inhibits enzyme action. This is a sort of general rule," Murakami said. "In this specific case, the glucose produced inhibits the action of beta-glucosidase. This technological constraint has been exhaustively studied. To increase saccharification efficiency, the beta-glucosidase has to be highly glucose tolerant."

Second-generation ethanol (also called cellulosic ethanol) open perspectives for optimizing alcohol production. Since 2G ethanol is obtained from from sugarcane straw and bagasse, it basically makes it possible converting waste into energy.

Holder of the world's best biomass and boasting the installed industrial capacity, the requisite specialized engineers and the right yeast, Brazil performs advanced research in the field. The country could project a 50% leap in its alcohol production were it capable of mastering 2G ethanol technology.

The missing piece on the puzzle is to make the sugarcane bagasse saccharification feasible - saccharification meaning the process by which complex sugars called polysaccharides are depolymerized and broken down into simple soluble sugars. This would be achieved through composing the proper enzyme cocktail and consequently assembling an industrial-scale microbial platform for the production of these enzymes.

An important step in overcoming this challenge has been given through the discovery of microorganisms living in the Brazilian Amazon that produce an enzyme of key significance to the success of the undertaking.

The enzyme has been isolated, characterized and reproduced, proving to be compatible with two essential stages of the production of second-generation ethanol: fermentation and saccharification. If these two stages can be performed simultaneously, the sugar and ethanol industry will cut its costs substantially because a single reactor can be used for all processes involved, economizing on reagents.

The study involved researchers at Brazil's National Energy and Materials Research Center (CNPEM), Petrobras, the University of Sao Paulo (USP), and the Federal University of Sao Carlos (UFSCar), also in Sao Paulo State, and was supported by the Sao Paulo Research Foundation - FAPESP. An article by the research team has been published in Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.

"Saccharification is the most costly part of the process. The enzymes required to convert complex sugars into simple sugars account for between 30% and 50% of the cost of cellulosic ethanol," said Mario Tyago Murakami, a researcher at CNPEM and one of the principal investigators for the project.

"The enzymes' conversion efficiency is currently 50%-65%. That means between 50% and 35% of the sugar available in the biomass is 'lost' during saccharification. Our study set out to find biocatalysts that can help enhance enzyme efficiency," Murakami said.

In the arsenal of necessary enzymes acting synergistically, beta-glucosidases are crucially important for their role in the last step of the cellulose saccharification cascade.

"We know the saccharification rate falls as the proportion of saccharification product rises, because the presence of the product inhibits enzyme action. This is a sort of general rule," Murakami said. "In this specific case, the glucose produced inhibits the action of beta-glucosidase. This technological constraint has been exhaustively studied. To increase saccharification efficiency, the beta-glucosidase has to be highly glucose tolerant."

Owing to genetic specificities that derive from differences in the evolutionary process, homologous enzymes can display varying degrees of resistance to inhibition by the product. The aim of this study was to find beta-glucosidases suited to the biomass that is available in Brazil; to this end, the researchers focused on natural processes occurring in the Amazon Forest and Cerrado (Brazilian savanna) biomes.

Flavio Henrique da Silva, Full Professor in UFSCar's Department of Genetics and Evolution and co-principal investigator for the project, was responsible for this bioprospecting enterprise. The most promising discovery occurred in Lake Poraque in the upper Solimoes, near Coari, Amazonas. Samples taken from the local non-cultivable microbial community contained genes encoding beta-glucosidases with the requisite industrial potential.

"In a habitat like Lake Poraque, microorganisms adapt to food sources rich in polysaccharides from plant litter, leaves, wood, and so on. The beta-glucosidase enzymes present in these microorganisms differ from homologous enzymes resulting from different evolutionary pressures," Murakami said.

Simultaneous saccharification and fermentation
In his enzymological studies, Silva found that the beta-glucosidase encoded by microorganisms in Lake Poraque could be an efficient catalyst in sugarcane bagasse saccharification and was highly glucose tolerant. The next step was taken by members of Murakami's team who specialize in mechanistic structural biology and who elucidated this enzyme's functioning at the molecular and atomic level.

"It was a good example of teamwork," Murakami said. "It brought together prospecting groups, enzymology groups, mechanistic studies groups, bioinformatics groups, and so on. We used equipment at the National Synchrotron Light Laboratory and other Brazilian laboratories."

With regard to molecular structure, the oligomeric study evidenced a protein that differed from others in its category, with a unique quaternary architecture.

"This study corroborated previous research by the group regarding the structural determinants for the enzyme's product tolerance, validating our mechanistic model. In addition, we found that this beta-glucosidase is effective under temperature and pH conditions compatible with the hydrolysis process," Murakami said.

This information is highly relevant because it suggests the enzyme discovered by the group could be used in a process called simultaneous saccharification and fermentation (SSF).

Because it is effective at temperatures compatible with the growth of yeast, this beta-glucosidase enables the release of carbohydrates resulting from saccharification and their fermentation by yeast to occur at the same time. This strategy mitigates inhibition by the product because the sugars are consumed by the yeast as they are released, avoiding inhibition of the enzyme due to excessive glucose production.

The next step will be to study combining the enzyme with existing fungal enzyme cocktails to enhance efficiency by boosting saccharification.

"Once the gene of interest has been extracted using gene libraries for non-cultivable microorganisms and possible rational modifications based on knowledge of the structure to increase thermostability, it's transferred to other hosts by means of molecular biology techniques," Murakami said.

"The host in question is Trichoderma, a filamentous fungal genus that already has an arsenal of carbohydrate-active enzymes. The addition of beta-glucosidase from the Amazon will boost its potential. The goal is to enhance the efficiency of an industrial microbial platform that already exists." The researchers plan to apply for a patent on the fungus engineered with the enzyme.

Research paper


Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
World's strongest bio-material outperforms steel and spider silk
Hamburg, Germany (SPX) May 17, 2018
At DESY's X-ray light source PETRA III, a team led by Swedish researchers has produced the strongest bio-material that has ever been made. The artifical, but bio-degradable cellulose fibres are stronger than steel and even than dragline spider silk, which is usually considered the strongest bio-based material. The team headed by Daniel Soderberg from the KTH Royal Institute of Technology in Stockholm reports the work in the journal ACS Nano of the American Chemical Society. The ultrastrong m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
NYSERDA Announces $10 Million Available to Launch New Cleantech Accelerator

Kyocera TCL Solar Completes 29MW Solar Power Plant on Repurposed Land in Japan

Team achieves two-electron chemical reactions using light energy, gold

NEXTracker sales surge for Series 6 Mounting Systems across 600MW of new projects

BIO FUEL
Enbridge: Michigan oil pipeline needs reinforcement

North Sea oil field reaches peak production rate

For oil, the next concerns are geopolitical, the IEA says

Maintenance drags oil output lower for Norway

BIO FUEL
Projecting climate change along the Millennium Silk Road in a warmer world

Lives in the balance as UN debates climate finance

In ancient rocks, scientists see a climate cycle working across deep time

Earth's orbital changes have influenced climate, life for at least 215M years

BIO FUEL
Microwaved plastic increases lithium-sulfur battery lifespan

Scientists discover how a pinch of salt can improve battery performance

New device could increase battery life of electronics by a hundred-fold

World's fastest water heater

BIO FUEL
Toward organic fuel cells with forest fuels

World's strongest bio-material outperforms steel and spider silk

Solar powered sea slugs shed light on search for perpetual green energy

Novel approach for photosynthetic production of carbon neutral biofuel from green algae

BIO FUEL
How even one automated, connected vehicle can improve safety and save energy in traffic

Tesla reorganizing to speed up production

Finnish robot car aims for 24/7 driving - also sees through fog

Tesla chief defends self-driving cars after new crash

BIO FUEL
Cassava breeding hasn't improved photosynthesis or yield potential

Seven chateaux and counting: Chinese billionaire is big in Bordeaux

Seven chateaux and counting: Chinese billionaire is big in Bordeaux

Wood you like a drink? Japan team invents 'wood alcohol'

BIO FUEL
Microscale IR spectroscopy enabled by phase change materials and metasurfaces

Step aside Superman, steel is no competition for this new material

Telephonics contracted for Coast Guard radar systems

Lasers in Space: Earth Mission Tests New Technology









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.