From petroleum to wood in the chemical industry: cost-efficient and more sustainable by Staff Writers Leuven, Belgium (SPX) Feb 14, 2020
An interdisciplinary team of bio-engineers and economists from KU Leuven has mapped out how wood could replace petroleum in the chemical industry. They not only looked at the technological requirements, but also whether that scenario would be financially viable. A shift from petroleum to wood would lead to a reduction in CO2 emissions, the researchers state in Science. Our plastics, cleaning agents and building materials are usually made from chemical components derived from petroleum, rather than from renewable materials. Petroleum is currently cheaper to use as a raw material. But that doesn't have to be the case. The team of researchers previously published on how wood can be transformed into chemicals that can be used in a plethora of products. That process has now been fully mapped out. Moreover, they calculated that it can be financially feasible to build and run a biorefinery that converts wood into chemical building blocks. To extract chemicals from wood, it is first split into a solid paper pulp and a liquid lignin oil. The pulp can be used to produce second generation biofuels or natural insulation, while the lignin oil, like petroleum oil, can be further processed to manufacture chemical building blocks, such as phenol, propylene, and components to create ink. The lignin can also be used to make alternative building blocks for plastics. Chemical compounds based on lignin are less harmful to humans, compared to those made out of petroleum. "In the paper industry, lignin is seen as a residual product and usually burned. That's a pity, since just like petroleum, it can have many high quality uses if it can be properly separated from wood and the right chemical building blocks are extracted," explains Professor Bert Sels of the Department of Microbial and Molecular Systems. As a result, wood could replace petroleum in the chemical industry. The new publication is an important milestone in the team's long-term research. "What's so special about this study is that we calculated the economic viability of a switch from petroleum to wood," says Bert Sels. To create a realistic scenario, the researchers joined forces with a Belgian-Japanese ink company. This is because certain compounds from lignin can be used to make ink. The calculations indicate that a chemical plant that uses wood as a raw material can be profitable after a few years.
CO2 storage The environmental cost of using wood would be smaller than when using petroleum, since chemical compounds made from wood cause less CO2 emissions. Moreover, products made from wood derivatives can store CO2, just like trees do. "As a result, it would be possible to store carbon from CO2 in plastics - preferably recyclable ones," Sels said. To demonstrate the application of their research, the team will now scale up the production process. The first test phase has already started. Ultimately, they want to create a wood biorefinery in Belgium. In the meantime, the researchers are in conversation with various business partners who can process the cellulose pulp and lignin oil in a variety of products. "The chemical sector emits a lot of CO2 globally. A serious change is needed to achieve a carbon neutral chemistry," says Bert Lagrain, Sustainable Chemistry Innovation Manager. "By scaling up our research project, we hope to get the industry on board."
Research Report: 'A sustainable wood biorefinery for low-carbon footprint chemicals production'
Drilling a 3,000 meters deep well Geneva, Switzerland (SPX) Feb 11, 2020 Although stopping climate change is challenging, it is imperative to slow it down as soon as possible by reducing greenhouse gas emissions. But how can we meet the growing energy demand while reducing our use of polluting fossil fuels? Geothermal energy is an efficient, non-polluting solution but in certain cases geothermal operations must be handled with care. Reaching the most powerful sources of available energy means drilling deep into the layers of the earth's crust to find geothermal fluids ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |