Energy News  
BIO FUEL
Experimental plasma generator offers path forward for better use of landfill gas as energy
by Staff Writers
Washington DC (SPX) Nov 07, 2018

Schematic of the experimental setup of siloxane removal from a carrier gas by application of dielectric barrier discharge plasma

Methane gas released from landfills has long been a topic of interest for alternative energy. One issue, however, is that landfill gases contain numerous contaminants, such as volatile methyl siloxanes, whose silica deposits put extra wear and tear on the natural gas generators when they combust. One group has demonstrated a promising new application of plasma technology capable of removing such compounds.

Researchers at the University of South Carolina in Columbia have demonstrated an experimental plasma device capable of cleaning gas samples of D4, one of the most common siloxanes. Drawing on a technique for creating plasma called dielectric barrier discharge, the group was able to significantly reduce the amount of D4 samples after treating it with a helium-based plasma.

The findings point to a new potential solution for accommodating landfill gas rich in siloxanes. They will be presented at the American Physical Society 71st Annual Gaseous Electronics Conference and 60th Annual meeting of the APS Division of Plasma Physics, which takes place Nov. 5-9 at the Oregon Convention Center in Portland.

"This is the first time dielectric barrier discharge has been used to remove volatile organic silicate compounds," said Malik Tahiyat, one of the researchers involved with the study. "In our case, there's no wait for removing it or material that has to be thrown out after a certain amount of time."

Silicates erode the engines that drive natural gas electricity production, requiring extra costly maintenance. Most current methods of removing them from cleaner burning methane, such as carbon filters and silica gel, suffer from diminished performance and can be costly to reuse.

The group created a dielectric barrier discharge plasma to render D4 inert by polymerizing it out of the gas phase. Helium gas was bubbled through liquid siloxane, which is then passed through a tubular dielectric barrier discharge plasma reactor.

Samples that were treated with electric discharges were compared to samples that were not. Gas chromatography-mass spectrometry and nuclear magnetic resonance techniques were used to evaluate the quantity and identity of the products from the plasma reactions.

Depending on how long the helium with D4 was exposed to the plasma, up to 85 percent of the D4 was converted to removable deposits of silica compounds, confirming that the silicon was removed from the gas mixture.

"Our findings have shown that plasma can remove siloxane successfully," said Shamia Hoque, another researcher involved with the study. "When it is removed, it comes out in a form that wouldn't re-enter the waste supply, something that's a problem with the other approaches."

Tanvir Farouk, a third researcher involved with the study, said the group hopes to improve on the laboratory-based system with the hopes of one day scaling it up to a commercially viable product.


Related Links
American Physical Society
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Scientists find a 'switch' to increase starch accumulation in algae
Tokyo, Japan (SPX) Nov 05, 2018
Results from a collaborative study by Tokyo Institute of Technology and Tohoku University, Japan, raise prospects for large-scale production of algae-derived starch, a valuable bioresource for biofuels and other renewable materials. Such bio-based products have the potential to replace fossil fuels and contribute to the development of sustainable systems and societies. A "switch" controlling the level of starch content in algae has been discovered by a research team led by Sousuke Imamura at the L ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
New efficiency record set for perovskite LEDs

Puerto Rico works to tap renewable energy as part of better storm prep

Photon Energy breaks ground on 5 Mwp solar projects in Hungary

Solar smashes several records in September

BIO FUEL
Crude oil prices up as U.S. announces waivers from Iran sanctions

US issues waivers to allow Iran deal to continue

China to continue Iran trade despite new US sanctions

Venezuela blames Colombia after border ambush kills three

BIO FUEL
What happened in the past when the climate changed?

Perilous times for Australia wildlife amid severe drought

Perilous times for Australia wildlife amid severe drought

'Big dry' drags on as Australia sets up drought-proof fund

BIO FUEL
New quantum criticality discovered in superconductivity

Ben-Gurion University researchers achieve breakthrough in process to produce hydrogen fuel

Manganese may finally solve hydrogen fuel cells' catalyst problem

Chilean court authorizes Chinese group's lithium production purchase

BIO FUEL
Alcohols as carbon radical precursors

Reducing US coal emissions through biomass and carbon capture would boost employment

Scientists find a 'switch' to increase starch accumulation in algae

Laser technique may open door to more efficient clean fuels

BIO FUEL
Electriq~Global launches water-based fuel to power electric vehicles

Carbon-busting system to launch at massive Las Vegas auto week

Driverless vehicle experts get hands on experience in South Australia

Ford and Baidu partner up on testing self-driving cars in China

BIO FUEL
Slashed award accepted in Monsanto cancer trial

Cypriot farmers fear no-deal Brexit may hit livelihoods

Chocolate's origin 1,500 years earlier than thought, archaeologists find

Brazil's Bolsonaro to merge environment, farm ministries

BIO FUEL
Physicists name and codify new field in nanotechnology: 'electron quantum metamaterials'

Bose-Einstein condensate generated in space for the first time

Super-computer brings 'cloud' to astronauts in space

Disorder plays a key role in phase transitions of materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.