Energy News  
BIO FUEL
Enzyme leads scientists further down path to pumping oil from plants
by Staff Writers
College Station TX (SPX) Apr 13, 2016


Dr. Timothy Devarenne studies the biofuel properties of a common green microalga called Botryococcus braunii in his lab at Texas A and M University. Image courtesy Texas A and M AgriLife Research photo by Kathleen Phillips. For a larger version of this image please go here.

An enzyme responsible for making hydrocarbons has been discovered by Texas A and M AgriLife Research scientists studying a common green microalga called Botryococcus braunii.

The study, published in the current issue of the journal Nature Communications, could enable scientists to use the enzyme in a plant to make large amounts of fuel-grade oil, according to Dr. Tim Devarenne, AgriLife Research biochemist in College Station and lead scientist on the team.

Devarenne's lab has been studying the concept of making fuel from algae on a $2 million National Science Foundation grant for four years.

"The interesting thing about this alga is that it produces large amounts of liquid hydrocarbons, which can be used to make fuels such as gasoline, kerosene and diesel fuel," Devarenne said. "And these liquid hydrocarbons made by the alga are currently found in petroleum deposits, so we are already using them as a source to generate fuel. "Botryococcus is found pretty much everywhere in the world except for seawater," he added.

"It's very cosmopolitan. It grows in freshwater or brackish water. It's found in almost all ponds and lakes around the world. It's been found in every continent except Antarctica, and it grows from mountain to desert climates."

What his lab has been trying to understand is how Botryococcus braunii makes the liquid hydrocarbons - what genes and pathways are involved - so the genes can be manipulated to make more oil, possibly by transferring those genes into a land plant like tobacco, or maybe other algae that grow very quickly, Devarenne said.

"One of the issues with Botryococcus is that it grows very slowly. You just don't get a lot of biomass and on an economic scale that means it would not work to use this alga. It takes about a week for one Botryococcus cell to double into two cells, whereas a faster growing algae - but one that doesn't make a lot of oil - can double in about six hours," he said.

"Maybe if we can transfer the genetic information to make these oils into quicker growing organisms like other algae that grow a lot quicker or a land plant that can produce large amounts of biomass, we can have them produce oil for us."

But first, researchers need to understand which genes enable oil production.

"In this study, we were interested in deciphering the biochemical pathway for making this oil, which is called lycopadiene," he said. "We discovered a very interesting gene that's called lycopaoctaene synthase, or LOS. And the enzyme encoded by the LOS gene is able to initiate the production of the oil, so we started to essentially pick apart this pathway."

A closer look at the LOS enzyme revealed that the enzyme is "promiscuous" in that it is capable of mixing several different substances, or substrates, to make different products, Devarenne said.

"While that ability is found fairly often throughout nature, it's unique for this type of hydrocarbon and enzyme," he noted. "We were able to characterize that this enzyme from this alga is able to make several different hydrocarbon-like products."

The project included Devarenne's graduate student Hem Thapa and colleague Mandar Naik at Texas A and M University in College Station, along with Shigeru Okada and Kentaro Takada from the University of Tokyo in Japan, Istvan Molnar from the University of Arizona's College of Agriculture and Life Sciences and Yuquan Xu from the Chinese Academy of Agricultural Sciences.

"We had an idea of what the enzyme would be like, but the surprise was finding that LOS is able to utilize three different molecules as substrates, and it can make combinations of these molecules," Devarenne said. "Some of the substrates are 20 carbons long, some are 15 carbons long. We can mix them with the enzyme so that two 20-carbon molecules will make a 40 carbon molecule, or two 15-carbon molecules to make a 30 carbon molecule, or a 20-carbon substrate and a 15-carbon substrate will make a 35-carbon substrate."

Devarenne explained that's not only different from other enzymes that are similar to LOS, but it's important because most enzymes like LOS only use a 15-carbon substrate. In terms of fuel, it's better to start with a higher carbon number molecule.

The team determined the sequence of all the actively "working" genes of the organism under hydrocarbon producing conditions. Bioinformatic analysis of this sequence information was then able to pinpoint a gene that might have the appropriate activity to initiate hydrocarbon biosynthesis, Molnar said.

"Modern sequencing technology in conjunction with sophisticated bioinformatics algorithms increasingly allows us to map the biochemical potential of many organisms - even those that are difficult or even impossible to grow in laboratory conditions," Molnar noted.

"This technology, referred to as 'genome mining,' allows the closer investigation of interesting enzymes, so that these enzymes could later be used for many applications in healthcare, agriculture or various chemical industries, or for biofuel production as is the case here."

"We're still a ways away from making a commercial product, but our next step is to finish deciphering the pathway," Devarenne said. "We've identified the very first step in the pathway - making the first 40 carbon hydrocarbon. We have some gene candidates for the next step of the pathway, and we are just starting to characterize those."

Even when the genes are more fully understood, scientists will have to find the right host organism to express the genes, optimize that expression and try to get them to produce as much of the oil as possible - all of which involves a lot of basic research and time, he said.

Plus, when oil prices go through a slump, he said, the government support of alternative fuel sources wanes.

"There is a roller coaster of funding depending on what the price of oil is," Devarenne said. "But we believe we should be making biofuels and replacing petroleum, and it's not good policy in our mind to only worry about fuel supplies based on the price of oil. It should be pursued no matter what."

Research paper: A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Texas A and M AgriLife Communications
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Penn chemists lay groundwork for countless new, cleaner uses of methane
Philadelphia PA (SPX) Apr 01, 2016
Methane is the world's most abundant hydrocarbon. It's the major component of natural gas and shale gas and, when burned, is an effective fuel. But it's also a major contributor to climate change, with 24 times greater potency as a greenhouse gas than carbon dioxide. With a new method, a research team led by chemists at the University of Pennsylvania has demonstrated the potential to use m ... read more


BIO FUEL
287MW Soda Mountain solar project approved in SoCal

Trina Solar supplies 40 MW of Solar Modules to Tegnatia in Turkey

NREL, SLAC scientists pinpoint solar cell manufacturing process

Perovskite solar-cell absorbers improved by giving them a squeeze

BIO FUEL
Penn chemists lay groundwork for countless new, cleaner uses of methane

Dung, offal make clean gas at Costa Rica slaughterhouse

ORNL invents tougher plastic with 50 percent renewable content

The flexible way to greater energy yield

BIO FUEL
Scotland generated most of its electricity in 2015 through renewables

RWE making bold moves in Scottish renewables

Wind energy growing, IEA report finds

Momentum building behind U.S. wind energy

BIO FUEL
Transition of copper-oxide compound studied in fine detail

Back to basics with thermoelectric power

Creation of Jupiter interior, a step towards room temp superconductivity

For rechargeable batteries that crush the competition, crush this material

BIO FUEL
Study shows best way to reduce energy consumption

US tech giants file brief in favor of Obama 'clean power' plan

Four killed at anti-China power plant protest in Bangladesh

Human impact forms 'striking new pattern' in Earth's global energy flow

BIO FUEL
Tesla recalls 2,700 Model X SUVs for seat problem

China firm boosts self-driving technology with $1 bn overseas deals

VW managers refuse to forego bonuses: report

Self-drive trucks 'future of Europe's busy highways'

BIO FUEL
'Climate-smart soils' may help balance the carbon budget

On the lamb: Pakistani officials recover kidnapped newborn sheep

Earth's soils could play key role in locking away greenhouse gases

A lesson from wheat evolution: From the wild to our spaghetti dish

BIO FUEL
'Self-healing' plastic could mean better bandages, tougher phone cases

Ruthenium nanoframes open the doors to better catalysts

Artificial molecules

Record-breaking steel could be used for body armor, shields for satellites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.