Subscribe free to our newsletters via your
  Energy News  

Subscribe free to our newsletters via your

Tiny red crystals dramatically increase biogas production
by Staff Writers
Sydney, Australia (SPX) Feb 22, 2016

Crystals of a synthetic dye called neutral red can dramatically increase the amount of methane gas emitted by naturally occurring microbes living in coal seams and on food waste. Image courtesy UNSW. For a larger version of this image please go here.

Researchers have discovered a way to produce a tenfold increase in the amount of methane gas emitted by naturally occurring microbes living in coal seams and on food waste.

The innovation could benefit the environment by extending the lifespan of coal seam gas wells, as well as improving the economics of using woody crops and left-over food as commercial sources of biogas.

The technique involves the addition of small amounts of a synthetic dye that forms previously unobserved needle-like crystals to help the methane-producing microbes grow faster.

"It's simple. If the microbes grow faster, they fart more methane," says study senior author UNSW Associate Professor Mike Manefield.

Biogas emitted by microbes will be vital for meeting the world's future energy needs and helping reduce greenhouse gas emissions from the burning of other fossil fuels, Associate Professor Manefield says.

"Our research in the lab and in coal boreholes near Lithgow has shown that the crystals can lead to a massive leap in methane production - a tenfold increase from coal, and an 18-fold increase from food waste.

"This is very exciting and likely to be a game changer. We also expect our approach will work with renewable feedstocks for methane-producing microbes, such as woody plant material and the by-products of municipal wastewater treatment."

The study, by an international team spear-headed by UNSW's Dr Sabrina Beckmann, is published in the journal Energy and Environmental Science. The five-year-long research project was supported by the Australian Research Council and industry partner Biogas Energy.

The researchers studied a small synthetic molecule called neutral red that has been used for more than 150 years as a textile dye, or for staining cells under a microscope.

"We knew it was able to shuttle electrons about and we wondered if it could deliver them directly to the microbes that produce methane. Usually these ancient critters get electrons from hydrogen gas," says Associate Professor Manefield.

"When we added neutral red in the laboratory to a mixture of coal and naturally occurring groundwater microbes, in the absence of oxygen, we discovered it formed crystals that had never been seen before.

"The crystals act as electron sponges, harvesting electrons from minerals and bacteria in the mixture and then transferring them with a lot of power to the methane-producing microbes, boosting their growth."

The patented technology was also tested in a real-life environment in coal boreholes near Lithgow.

Small amounts of neutral red were injected 80 metres underground at three sites into the water-saturated coal seam. A fivefold to tenfold increase in methane production was observed during a 12-month period.

"Coal seam gas wells usually have a short lifespan and spent ones litter the countryside. Enhancing their methane production could reduce the need to build new ones," Associate Professor Manefield says.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of New South Wales
Bio Fuel Technology and Application News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Iowa State engineers develop hybrid technology to create biorenewable nylon
Ames IA (SPX) Feb 10, 2016
Engineers at Iowa State University have found a way to combine a genetically engineered strain of yeast and an electrocatalyst to efficiently convert sugar into a new type of nylon. Previous attempts to combine biocatalysis and chemical catalysis to produce biorenewable chemicals have resulted in low conversion rates. That's usually because the biological processes leave residual impurities that ... read more

Michigan draws fire over clean energy plans

UTA researchers devise more efficient materials for solar fuel cells

KYOCERA Donates Solar Power Generating Systems to Nepal to Support Earthquake Reconstruction

SolarEdge Surpasses 10 Million Shipped Power Optimizers

Titan probes depths of biofuel's biggest barrier

Iowa State engineers develop hybrid technology to create biorenewable nylon

Researchers create synthetic biopathway to turn agriculture waste into 'green' products

Spain's Abengoa submits plan to avoid bankruptcy: source

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

Germany aims to build wind energy reputation

Mechanical trees generate power as they sway in the wind

Explosive Growth Attracts Major Energy Storage Suppliers in Australia

Creation of Jupiter interior, a step towards room temp superconductivity

Clean energy from water

Footsteps could charge mobile electronics

The forecast for renewable energy in 2016

US, Canada and Mexico sign clean energy pact

Supreme Court deals blow to Obama climate plan

Online shopping about as "green" as a three dollar bill

Plaintiffs sue Mercedes alleging emissions cheating

Pirelli shareholders approve Marco Polo Industrial Holding merger

Volvo Cars high-end drive pays off in 2015 profits

Automakers aren't doing enough to cut emissions: NGO

Livestock donations to Zambian households yield higher income, improved diet

Enhanced levels of carbon dioxide are likely cause of global dryland greening

Market integration could help offset climate-related food insecurity

Lactation, weather found to predict milk quality in dairy cows

Scientists prove feasibility of 'printing' replacement tissue

Light used to measure the 'big stretch' in spider silk proteins

Not your grandfather's house, but maybe it should be

Shaping crystals with the flow

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement