Subscribe free to our newsletters via your
  Energy News  

Subscribe free to our newsletters via your

The flexible way to greater energy yield
by Staff Writers
Leipzig, Germany (SPX) Mar 23, 2016

Marcell Nikolausz and his colleagues discover that biogas production can be controlled by altering the frequency at which the reactors are fed. Image courtesy Andre Kunzelmann / UFZ. For a larger version of this image please go here.

Biogas is an important energy source that plays a central role in the energy revolution. Unlike wind or solar energy, biogas can be produced around the clock. Could it soon perhaps even be produced to meet demand? A team of international scientists, including microbiologists from the Helmholtz Centre for Environmental Research (UFZ), scientists from Aarhus University and process engineers from the Deutsches Biomasseforschungszentrum (DBFZ), have been studying the feasibility of this kind of flexible biogas production.

Among their findings, for example, is the discovery that biogas production can be controlled by altering the frequency at which the reactors are fed. If the intervals are longer, more biogas is produced, according to the researchers' paper in the Applied and Environmental Microbiology journal.

Biogas production has long been a valuable technology, as the constant feed of organic raw materials such as energy crops, manure, sewage sludge, catch crops and plant residues helps produce energy around the clock. The ability to produce energy at a constant rate is a clear advantage over other renewable energy sources such as wind or solar energy, which depend on the wind or sun for production. As a result of this ability, Germany currently has around 8,000 biogas plants installed, with a total electricity output of approximately 4,500 megawatts.

Around seven percent of the electricity generated in Germany now comes from biomass. It is hoped that even more electricity will be produced from this source in the future. Scientists from the UFZ, the University of Aarhus (Denmark) and the DBFZ succeeded in increasing the production of methane, the most valuable component of biogas, by up to 14 percent under laboratory conditions when the scientists added the substrate to the fermentation tank at intervals of between one and two days compared to the conventional interval of every two hours feeding.

The results were astonishing: "Feeding the reactor less often results in greater energy yield", summarised Dr Marcell Nikolausz, UFZ researcher at the Department of Environmental Microbiology and corresponding author of the study.

The researchers fed two 15-litre reactors with distiller's dried grains with solubles (DDGS) under identical conditions for a total period of almost four months. DDGS is a by-product of bioethanol production using starchy grains. The researchers fed one reactor with DDGS every two hours. The other reactor was fed with the entire quantity once per day, in one experiment, and once every other day in a second experiment.

The results were surprising. If the full quantity of biomass was fed into the fermentation tank just once a day, 14 percent more methane and 16 percent more total biogas is produced. If the tank was fed every two days, methane yield increased by 13 percent and biogas yield increased by 18 percent.

One explanation for this could be that the greater variations in environmental conditions, particularly the fluctuating substrate concentration, increased the diversity of the microbial community, leading to more functional groups of bacteria. "This gives the micro-organisms more ways to degrade the substrate more efficiently", said microbiologist Nikolausz. He explained that this accelerates production and provides the micro-organisms with better conditions in which to process the biomass more efficiently, especially the components that are difficult to degrade.

This flexible feeding management approach has no negative effect on the stability of the biogas production process. The researchers proved this by using T-RFLP profiles of the micro-organisms.

This method can be used to verify the genetic fingerprint of the community of bacteria and methanogenic archaea that convert the organic material to biogas in the reactor. In case of the bacteria that convert the complex components of the biomass, such as cellulose, starch, lipids and proteins, into carbon dioxide, hydrogen and acetic acids, in several stages, the composition of these bacterial communities varies in the different feeding regimes.

This is because the concentrations of ammonium nitrogen and hydrogen vary, as does the pH value. "The environment in the reactor is more dynamic when it is fed daily or every other day. This creates more functional niches, benefiting certain hydrolysing and acid-producing bacteria", said Nikolausz.

In contrast, the community of methanogenic archaea, which in the final stage produce methane, water and carbon dioxide, remained stable. Regardless of how often the reactor was fed with biomass, the Methanosarcina genus, with a relative proportion of up to 83 percent of all methanogens, was consistently dominant followed by the genus Methanobacterium, which constituted up to 31 percent of all methanogens. "Both genera appear to adapt well to the changing conditions", Nikolausz explained.

Research into flexible biogas production by employing feeding management is still in its infancy. The UFZ researchers plan to delve deeper into the results of the study. According to Nikolausz, the research results now need to be confirmed by trials in larger reactors. The use of other substrates is also an interesting subject. "We are keen to see whether we can also confirm that higher quantities of methane are produced when corn silage or sugar beets are used", said Nikolausz.

Daniel Girma Mulat, H. Fabian Jacobi, Anders Feilberg, Anders Peter S. Adamsen, Hans-Hermann Richnow, Marcell Nikolausz 2016: "Changing Feeding Regimes to Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways", Applied and Environmental Microbiology, 82:438-449,

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Helmholtz Centre for Environmental Research - UFZ
Bio Fuel Technology and Application News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Biodiesel from sugarcane more economical than soybean
Urbana IL (SPX) Mar 21, 2016
America's oil consumption far exceeds that of every other country in the world. What's more, it's unsustainable. Therefore, in 2007, Congress mandated a move away from petroleum-based oils toward more renewable sources. Soybeans, an important dietary protein and the current primary source of plant-based oils used for biodiesel production, only yield about one barrel per acre. At this rate, the s ... read more

Industry tightens screws on solar panel safety

Lockheed Martin forms energy group

Ingeteam Test Labs join Intertek's global SATELLITE program

Building better solar technologies for deep space missions

Biodiesel from sugarcane more economical than soybean

Growing Pure Algae 24 7 and Without Sunlight

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Compressing turbulence to improve internal confinement fusion experiments

Hot rocks: Kenya taps geothermal heat to boost power

Ferrite boosting photocatalytic hydrogen evolution

New fuel cell design powered by graphene-wrapped nanocrystals

Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Industry calls for fast lane for self-driving cars

US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

How more Research funding can hasten green revolution

Network of germ sleuths heads off nearly 276,000 foodborne illnesses a year

Fertilizer applied to fields today will pollute water for decades

Pesticides affect bees' ability to locate flowers, drink nectar

Cornell engineers unveil self-healing, morphing metal

New electrode for ion concentration analysis

Laser beams with a 'twist'

A foldable material that can change size, volume and shape

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement