Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Bio Fuel News .




BIO FUEL
Scientists build 'nanobowls' to protect catalysts needed for better biofuel production
by Staff Writers
Tampa, FL (SPX) Oct 29, 2012


"We needed a method to protect the catalysts without reducing their ability to function as desired during biorefining," Elam says. "Our solution was to use atomic layer deposition [ALD], a process commonly employed by the semiconductor industry to lay down single-atom thick layers of material, to build a 'nanobowl' around the metal particle."

It may sound like a post-season football game for very tiny players, but the "nanobowl" has nothing to do with sports and everything to do with improving the way biofuels are produced. That's the hope of a team of scientists from the Institute for Atom Efficient Chemical Transformations (IACT), an Energy Frontier Research Center led by Argonne National Laboratory (ANL), and including Northwestern University, the University of Wisconsin and Purdue University.

The team is using a layering technique developed for microchip manufacturing to build nanoscale (billionth of a meter) "bowls" that protect miniature metal catalysts from the harsh conditions of biofuel refining. Furthermore, the size, shape, and composition of the nanobowls can easily be tailored to enhance their functionality and specificity.

The team, led by Jeffrey Elam, principal chemist in ANL's Energy Systems Division, will present its research during the AVS 59th International Symposium and Exhibition, held Oct. 28-Nov. 2, 2012, in Tampa, Fla.

In recent years, nanoparticles of metals such as platinum, iridium and palladium supported on metal oxide surfaces have been considered as catalysts to convert biomass - organic matter from plants such as corn, sugarcane and sorghum - into alternative fuels as efficiently as possible.

Unfortunately, under typical biorefining conditions where liquid water may reach temperatures of 200 degrees Celsius (392 degrees Fahrenheit) and pressures of 4,100 kilopascals (600 pounds per square inch), the tiny metal nanoparticles can agglomerate into much larger particles which are not catalytically active. Additionally, these extreme conditions can dissolve the support.

"We needed a method to protect the catalysts without reducing their ability to function as desired during biorefining," Elam says. "Our solution was to use atomic layer deposition [ALD], a process commonly employed by the semiconductor industry to lay down single-atom thick layers of material, to build a 'nanobowl' around the metal particle."

To create a matrix of nanobowls containing active catalysts, the researchers first use ALD to deposit millions of metal nanoparticles (the eventual nanocatalysts) onto a support surface. The next step is to add an organic species that will only bind to the metal nanoparticles and not to the support. This organic "protecting group" serves as the mold around which the nanobowls are shaped.

"Again using ALD, we deposit layer upon layer of an inorganic material known as niobia [niobium pentoxide] around the protecting group to define the shape of the nanobowls in our matrix," Elam says.

"Once the desired niobia thickness is reached, we remove the protecting groups and leave our metal nanoparticles sheltered in nanobowls that prevent them from agglomerating. In addition, the niobia coating protects the substrate from the extreme conditions encountered during biorefining."

Elam says that the nanobowls themselves can be made to enhance the overall functionality of the catalyst matrix being produced.

"At a specific height, we can put down ALD layers of catalytically active material into the nanobowl walls and create a co-catalyst that will work in tandem with the nanocatalysts. Also, by carefully selecting the organic protecting group, we can tune the size and shape of the nanobowl cavities to target specific molecules in the biomass mixture."

Elam and his colleagues have shown in the laboratory that the nanobowl/nanoparticle combination can survive the high-pressure, high-temperature aqueous environment of biomass refining.

They also have demonstrated size and shape selectivity for the nanobowl catalysts. The next goal, he says, is to precisely measure how well the catalysts perform in an actual biomass refining process.

.


Related Links
American Institute of Physics
AVS Symposium
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BIO FUEL
Boeing-COMAC Technology Center Announces First Biofuel Research Project
Beijing, China (SPX) Oct 25, 2012
A newly formed technology center created by Boeing and Commercial Aircraft Corp. of China (COMAC) has announced that Hangzhou Energy Engineering and Technology, Co., Ltd., (HEET) will conduct the center's first research project. HEET, a company with experience developing alternative energy technologies, will focus on ways to convert discarded cooking oil into a component of sustainable aviation ... read more


BIO FUEL
Tokelau achieves renewable power

Next-generation antireflection coatings could improve solar photovoltaic cell efficiency

Scientists demonstrate high-efficiency quantum dot solar cells

ABC SOLAR To Develop FIT Power Generation Plants In Japan; Inks MOU With European Firms

BIO FUEL
Scientists build 'nanobowls' to protect catalysts needed for better biofuel production

Boeing-COMAC Technology Center Announces First Biofuel Research Project

Serbia marks opening of new biogas plant

Large-scale production of biofuels made from algae poses sustainability concerns

BIO FUEL
China backs suit against Obama over wind farm deal

DNV KEMA awarded framework agreement for German wind project developer SoWiTec

Sandia Labs benchmark helps wind industry measure success

Bigger wind turbines make greener electricity

BIO FUEL
Oil prices drop as hurricane blasts US East Coast

Obama shows support for natural gas

Crude down in Asia as hurricane threatens US

Utah oil sands projects gets green light

BIO FUEL
Poland hails carbon allowances compromise

Global headwinds trouble India's Suzlon

China energy giant Sinopec sees Q3 net profit fall

Japan eyes Mozambique for cheaper coal, gas

BIO FUEL
Wireless system charges electric vehicles

China approves Chery-JLR joint auto venture

Honda slashes forecast on China territorial spat

WTO appoints panel to probe China-US auto dispute

BIO FUEL
Gaps in border controls are related to alien insect invasions in Europe

Black rice and tea in Italy as China shows its green side

Honduran crocodile farm bets on skins' glam future

Formula unlocks secrets of cauliflower's geometry

BIO FUEL
Outdoor wear often coated in harmful chemicals: Greenpeace

French Magpie start-up leaches gold from water with modern alchemy

U.S. unveils new supercomputer

Google unveils large tablet, revamped Nexus lineup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement