Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















BIO FUEL
Researchers identify cheaper, greener biofuels processing catalyst
by Staff Writers
Champaign IL (SPX) Aug 28, 2017


A photomicrograph of the palladium and bacteria catalyst.

Fuels that are produced from nonpetroleum-based biological sources may become greener and more affordable, thanks to research performed at the University of Illinois' Prairie Research Institute that examines the use of a processing catalyst made from palladium metal and bacteria.

Biofuels are made from renewable materials such as plants or algae, and offer an alternative to petroleum-based sources. However, many biofuels are costly to produce because the precursor product, bio-oil, must be processed before it is sent to the refinery to be turned into liquid fuel. Illinois Sustainability Technology Center researcher B.K. Sharma and his co-authors have identified and tested a new processing method.

"Bio-oil forms from the same chemical reaction that forms petroleum," Sharma said. "But what takes millions of years naturally in the ground takes only minutes in the lab using a process that is very similar to pressure cooking."

Published in the journal Fuel, their findings point to a cheaper, more environmentally friendly and renewable catalyst for processing that uses common bacteria and the metal palladium, which can be recovered from waste sources such as discarded electronics, catalytic converters, street sweeper dust and processed sewage.

The bio-oil produced in the lab from algae contains impurities like nitrogen and oxygen, but treating it with palladium as a catalyst during processing helps remove those impurities to meet clean-air requirements, Sharma said.

For the palladium to do its job, the bio-oil needs to flow past it during processing. Previous studies have shown that allowing the oil flow through porous carbon particles infused with palladium is an effective method, but those carbon particles are not cheap, Sharma said.

"Instead of using commercially produced carbon particles, we can use bacteria cell masses as a sort of biologic scaffolding for the palladium to hold on to," Sharma said. "The oil can flow through the palladium-decorated bacteria masses as it does through the carbon particles."

To test the effectiveness of the new method, Sharma and his co-authors performed a variety of chemical and physical analyses to determine if their new processing treatment produced a liquid fuel that is comparable in quality to one made using the commercially produced catalyst.

"We found our product to be as good or even slightly better," Sharma said. "We were able to remove the oxygen and nitrogen impurities at a comparable rate, and yielded the same volume of product using our cheaper, greener catalyst as is observed using the more expensive commercial catalyst."

The more costly commercial catalyst has the added benefit that it can be used over and over without extensive processing, whereas the Sharma group's palladium-on-bacteria catalyst will need to undergo processing to be reused.

"It is a minor caveat," Sharma said. "The fact that we have shown the potential of making refinery-ready crude oil from algae bio-oil using a catalyst that can be prepared from low-grade recycled metals and green and economical bacterial biomass proves that this is a very promising advancement. In addition, this bio-catalyst would work equally well in petrochemical processing."

Research Report: "Nanoparticles of Pd supported on bacterial biomass for hydroprocessing crude bio-oil"

BIO FUEL
How a bacterium can live on methanol
Zurich, Switzerland (SPX) Aug 23, 2017
Many chemists are currently researching how small carbon molecules, such as methane and methanol, can be used to generate larger molecules. The earth is naturally rich in methane, and artificial processes like the fermentation of biomass in biogas plants also produce it in abundance. Methanol can be generated from methane. Both are simple molecules containing only a single carbon atom. How ... read more

Related Links
University of Illinois at Urbana-Champaign
Bio Fuel Technology and Application News

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Moscow gets its first traffic signals powered by renewable energy

Perovskite solar cells go single crystal

Shape-shifters soak up sunshine

Photosynthesis discovery could help design more efficient artificial solar cells

BIO FUEL
Oil and gas wells as a strong source of greenhouse gases

Oil prices bounce back after Harvey downgraded to tropical depression

U.S. releases oil from strategic reserves in response to Harvey

Libya's economic recovery hurt by attacks on oil centers

BIO FUEL
Methane from tundra, ocean floor didn't spike during previous natural warming period

Research identifies new microbe with potential to help rebalance Earth's nitrogen cycle

Study gives first proof that the Earth has a natural thermostat

Incomplete drought recovery may be the new normal

BIO FUEL
Silicon solves problems for next-generation battery technology

Recipe for safer batteries - Just add diamonds

Physicists find strange state of matter in superconducting crystal

No batteries required: Energy-harvesting yarns generate electricity

BIO FUEL
Researchers identify cheaper, greener biofuels processing catalyst

Technique could aid mass production of biodegradable plastic

How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

BIO FUEL
Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil

New emissions test necessary for new vehicles in the EU

New liquid-metal membrane technology may help make hydrogen fuel cell vehicles viable

Uber to resume Philippine service 'soon' after fine

BIO FUEL
Disneyland China falls a-fowl of huge turkey leg demand

France faces worst wine harvest since 1945

Sentinel-1 speeds up crop insurance payouts

Ray of hope for more abundant wheat crops

BIO FUEL
Clamping down on causality by probing laser cavities

Rare-metals in the Himalayas: The potential world-class treasure

Why does rubbing a balloon on your hair make it stick?

Making 3-D printing safer




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement