Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















BIO FUEL
Molecular Velcro boosts microalgae's potential in biofuel, industrial applications
by Staff Writers
East Lansing MI (SPX) Dec 23, 2016


Danny Ducat, MSU assistant professor, and Derek Fedeson, in the MSU-DOE Plant Research Laboratory. Image courtesy G.L. Kohuth. For a larger version of this image please go here.

Michigan State University scientists have engineered "molecular Velcro" into to cyanobacteria, boosting this microalgae's biofuel viability as well as its potential for other research.

The findings, featured in the current issue of ACS Synthetic Biology, show how MSU researchers have designed a surface display system to attach cyanobacteria, also known as blue-green algae, to yeast and other surfaces. The proof-of-concept may improve the efficiency of harvesting algae as well as open avenues to improve the construction of artificial microbial communities for sustainable biofuel production or other industrial projects.

"Inadequate cyanobacterial toolkits limited our ability to come up with biological solutions," said Derek Fedeson, MSU graduate student and the study's co-lead author. "So, we wanted to add another tool to the toolbox to expand the capacity of these bacteria, which can harness solar energy for the production of useful compounds."

In the study, the team focused on surface proteins of cyanobacteria to enable it to bind to specifically engineered surfaces. One of these was a strain of yeast that has a molecular hook on its surface.

Fedeson engineered the bacteria to produce a "loop" on its surface - something to bind the hooks to tether cyanobacteria. While this task was completed quickly, getting yeast to stick to algae when they bumped into each other took much longer.

"There were unknown structures that kept the yeast from adhering to the cyanobacteria," Fedeson said. "The loops on the surface appeared to be working, yet the cyanobacteria wouldn't stick. It seemed that there was a 'forest' of mysterious extracellular materials was blocking access to the cell surface."

To clear the way, it was important to first identify the molecular trees that were blocking the surface. The eureka moment came when the team added EDTA, a claw-like molecule sometimes used to treat lead poisoning. It loosened the bonds between the surface proteins, allowing them to be removed and identified.

Fedeson then worked to identify the genes responsible for encoding the trees. Once the genes were removed, the yeast were able to land and, like Velcro, connections were made via multiple loops and hooks, establishing a secure bond. Indeed, the researchers were able to show that a similar approach could be used to attach cyanobacteria to a variety of targets, biological or not.

This work has implications that go beyond merely making a "sticky bacteria". Cyanobacteria are powerful microbes at efficiently harnessing sunlight. A few years ago Danny Ducat, MSU assistant professor in the MSU-DOE Plant Research Laboratory and the study's senior author, bioengineered a high sugar-producing cyanobacteria that could potentially outproduce sugarcane - the most productive plant crop - by five to ten times.

Yet one of the biggest stumbling blocks preventing cyanobacteria and other microalgae from playing a larger role in biofuels is that separating these microscopic cells and recovering the sugar - or fuel - is costly and energy intensive.

"By changing the surface technology, we've proven that we can program these cyanobacteria for new interspecies and intercellular interactions," Ducat said. "In terms of biofuels, engineered cyanobacteria strains could greatly reduce the high production costs by opening up new avenues for harvesting cellular biomass. For example, we can genetically program these cells to recognize and stick to specific materials, reducing the need for specialized and expensive centrifuges or filters."

Demonstrating that microalgae can be improved through advancing surface display technology allows them to be part of more research solutions as well. For example, the lab currently is investigating how to build artificial communities of microbes that work together towards a common goal. In one project, the cyanobacteria act as the solar panel for the community, collecting sunlight and converting the energy into sugars. Other microbes, such as yeast, can consume these sugars to produce useful compounds, including fuels.

Future studies will explore how to improve the surface display and make the process more efficient.


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Michigan State University
Bio Fuel Technology and Application News






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae
Princeton NJ (SPX) Dec 20, 2016
Photosynthetic algae have been refining their technique for capturing light for millions of years. As a result, these algae boast powerful light-harvesting systems - proteins that absorb light to be turned into energy - that scientists have long aspired to understand and mimic for renewable energy applications. Now, researchers at Princeton University have revealed a mechanism that enhance ... read more


BIO FUEL
Tenth Year of Consecutive Global Growth for PV Demand, IHS Markit Says

Saudi Vision 2030 Gives Boost to Solar Energy Investors

Canadian Solar Subsidiary Recurrent Energy Completes 200 Megawatt Garland Solar Facility

EDF EN France chooses Trina Solar modules for its PV plant in Fos sur Mer

BIO FUEL
Gas prices moving higher alongside oil prices

The deepwater horizon aftermath

Additional drilling slated for Leviathan gas field

California officials challenge fracking off coastline

BIO FUEL
Offshore wind makes U.S. debut

Apple invests in China wind farms

German energy company plants wind farm seed in Texas

New York to bid in Federal Offshore Wind Auction

BIO FUEL
Scientists boost catalytic activity for key chemical reaction in fuel cells

Lower cost of LEDs reduce profitability for manufacturing landscape

Scientists turn to AI to create safer lithium-ion batteries

Could a seawater battery help end our dependence on lithium?

BIO FUEL
Japan pulls plug on troubled fast breeder reactor

Bulgaria seeks investor to revive nuclear project

Japan switches on nuclear reactor after safety shutdown

Fukushima costs to double to nearly $180 bn: report

BIO FUEL
Better road planning could boost food production while protect forests

VW reaches $1 bn compensation deal in 3.0-liter diesel case

VW settles Canada drivers' class action over emissions

Google's Waymo adds 100 Chryslers to self-driving fleet

BIO FUEL
In Benin, 'Smart-Valleys' bring rice bounty

Many GMO studies have financial conflicts of interest

Corn yield modeling towards sustainable agriculture

S. Korea issues top bird flu alert

BIO FUEL
Mind-controlled toys: The next generation of Christmas presents?

Ultra-high-speed optical fiber sensor enables detection of structural damage in real time

Discovery to inspire more radiation-resistant metals

Researchers discovered elusive half-quantum vortices in a superfluid




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement