Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



BIO FUEL
Cleaning Okinawan pig farm wastewater with microbial fuel cells
by Staff Writers
Onna, Japan (SPX) Nov 22, 2017


In their study, the OIST researchers hypothesized that an MFC will be better at treating wastewater if the anode is prepared with sludge that has been in prior contact with that particular waste stream. They tested this hypothesis at a local pig farm managed by the Okinawa Animal Husbandry Research Center in Nakijin, a village in the northern part of the island. They used sludge collected from a swine wastewater receiving tank at this farm, as well as sludge collected from a wastewater reactor at a local brewery.

One of the greatest threats to the environment today is wastewater left over from production activities. Agricultural practices, such as pig farming, produce a large amount of wastewater containing organic contaminants, malodorous gases, and other substances that are damaging to the water supply. Usual methods of treating and recycling such wastewater include aeration, applying it as fertilizer to other farming areas or confining it to specialized ponds and wetlands to undergo natural cleansing processes.

However, in areas such as Okinawa, Japan, with limited land resources and a lot of pig farms, the amount of wastewater produced outweighs the land available for treatment and recycling. As such, there is a great need to find better, faster, and cheaper methods of wastewater treatment, which is part of what birthed the Biological Systems Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). Using a promising wastewater treatment technology, called a microbial fuel cell (MFC), the Unit aims to help the island - and by proxy, other locations with similar wastewater issues - reduce its wastewater burden.

An MFC is, in a sense, an anaerobic container of concentrated bacteria that feed on biodegradable material and bacteria found in wastewater. It operates via bio-electrochemistry, meaning that the energy used to run the cell is generated from electron transfer from the ?bacteria to electrodes within the device - no outside energy source is needed. When wastewater passes through an MFC, the "feeding" bacteria digest the organic compounds in the wastewater and cleaner water comes out the other side. In addition, the digesting process expels energy which is converted into usable electricity. The end result is a device that cleans wastewater and generates electricity while doing so.

"[The cells are] low maintenance, low cost, and don't have a lot of moving parts," explains David Simpson, a technician in the OIST Biological Systems Unit. This is important for those who do not have the time or resources to maintain expensive treatment equipment - a description that fits the bill for harried workers such as pig farmers.

"Ideally what we're working toward is to put the fuel cell [where you need it] and forget about it," explains Professor Igor Goryanin, who leads the Unit at OIST. "It will monitor and treat the wastewater by itself."

Already the OIST researchers have developed MFCs with the ability to function for long periods of time without breaking down or "gunking" up. Now, in a paper published in Scientifica, they have identified a way to strengthen the devices' performance too. Before running an MFC, it must first be cultured, or inoculated, with the "digesting" bacteria. To do this, one shovels sludge containing bacteria into a part of the MFC called the anode. Here, the desired bacteria are propagated for later use in wastewater treatment.

In their study, the OIST researchers hypothesized that an MFC will be better at treating wastewater if the anode is prepared with sludge that has been in prior contact with that particular waste stream. They tested this hypothesis at a local pig farm managed by the Okinawa Animal Husbandry Research Center in Nakijin, a village in the northern part of the island. They used sludge collected from a swine wastewater receiving tank at this farm, as well as sludge collected from a wastewater reactor at a local brewery.

In comparing the productivity of the two types of MFCs, they found that the swine sludge MFC treated the pig farm wastewater much better than the one from the local brewery. The markers the researchers used to judge this were the removal rate of chemical oxygen demand and volatile fatty acids - contaminants of the water supply - as well as electricity generation.

In addition to the pig farm, the Unit has MFCs placed at other sites in Okinawa and around the world - including an Awamori distillery in Okinawa, a whisky distillery in Scotland, and a winery in California, United States. In California they are using the treated wastewater for irrigation. The MFCs at the Awamori distillery site have been operating for about 5 years. Simpson explains that, at the moment, these MFCs at the Awamori site are cleaning the water to a level that allows for safe discharge into sewers.

"[We can] remove organics to a high degree, with about 90 percent efficiency," Simpson explains. "But treating it releases ammonia and phosphates." These are chemicals that can cause oxygen depletion in water as well as harmful algal blooms. "So we are trying to close the loop." They are working to harvest the nutrients - phosphate, ammonia - at the lab scale.

The Unit is currently working with collaborators in the Okinawa Prefectural Livestock and Grassland Research Center and the Okinawa Environment Science Center, with funding from the Okinawa Prefecture Government, to develop a solution for capturing and removing the nutrients, potentially leading to valuable and sustainable byproducts for fertilizers.

"The idea of wastewater treatment is to eventually help those countries without access to clean drinking water," Professor Goryanin explains, "perhaps by cleaning water to be used in potable wells."

For now, the OIST researchers will continue to test, run, and optimize their MFCs with the hope that one day they may ease the globe's wastewater burden.

Research paper

BIO FUEL
Coffee set to power London buses in green initiative
London (AFP) Nov 20, 2017
London's caffeine habit could soon provide an eco-friendly energy kick to its buses, including its iconic red double decker. Some six thousand litres of oil extracted from ground coffee waste will be added to fuel tanks of the city's transport authority on Monday - enough to power a bus for a whole year. Behind the awareness-raising stunt is British start-up Bio-bean, which has been d ... read more

Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Burkina, France launch W.Africa's biggest solar plant

Improving solar cells by watching atoms move in hybrid perovskite crystals

Artificial photosynthesis gets big boost from new catalyst

Glass microparticles enhance solar cells efficiency

BIO FUEL
Libyan PM asks for easing of arms embargo

U.S. set to be net gas exporter for second year in a row

Norway sells foreign currencies in petroleum-related move

OPEC expectations lift oil prices higher

BIO FUEL
Canada to explore trade, climate change fight, with China

Moroccans pray for rain as 'mercy from God'

Spain, Portugal struggle with extreme drought

Climate change encouraged 19th century migration to America

BIO FUEL
New computational method provides optimized design of wind up toys

Statoil: Batteries can address wind power variability

Musk beats deadline for building world's biggest battery

Musk's record-breaking battery officially launches in Australia

BIO FUEL
Cleaning Okinawan pig farm wastewater with microbial fuel cells

Brazilian ethanol can replace 13 percent of global crude oil consumption

The water world of ancient photosynthetic organisms

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

BIO FUEL
Norway puts brakes on plans for 'Tesla tax'

SoftBank offer for Uber shares to cut valuation: reports

Traffic-weary Chinese man fined for repainting road lines

Driverless, electric future just round the corner for urban cars

BIO FUEL
To address hunger effectively, first check the weather

EU deadlock over weedkiller goes to appeal

EU breaks stalemate to renew licence on controversial weedkiller

Scientists turn tofu whey into 'tasty' alcoholic drink

BIO FUEL
New way to write magnetic info could pave the way for hardware neural networks

Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

X-rays reveal the biting truth about parrotfish teeth




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement