Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



BIO FUEL
Copper catalyst yields high efficiency CO2-to-fuels conversion
by Staff Writers
Berkeley CA (SPX) Sep 21, 2017


Schematic of a new catalyst made of copper nanoparticles that converts carbon dioxide to multicarbon products (ethylene, ethanol, and propanol). At top left are transmission electron microscope images of the copper nanoparticles. The transformation of the nanoparticles from spheres to cube-like structures is key to keeping the energy input low for the reactions. Credit Dohyung Kim/Berkeley Lab

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of creating a clean chemical manufacturing system that can put carbon dioxide to good use.

In the new study, published this week in the Proceedings of the National Academy of Sciences (PNAS), a team led by Berkeley Lab scientist Peidong Yang discovered that an electrocatalyst made up of copper nanoparticles provided the conditions necessary to break down carbon dioxide to form ethylene, ethanol, and propanol.

All those products contain two to three carbon atoms, and all are considered high-value products in modern life. Ethylene is the basic ingredient used to make plastic films and bottles as well as polyvinyl chloride (PVC) pipes. Ethanol, commonly made from biomass, has already established its place as a biofuel additive for gasoline. While propanol is a very effective fuel, it is currently too costly to manufacture to be used for that purpose.

To gauge the energy efficiency of the catalyst, scientists consider the thermodynamic potential of products - the amount of energy that can be gained in an electrochemical reaction - and the amount of extra voltage needed above that thermodynamic potential to drive the reaction at sufficient reaction rates. That extra voltage is called the overpotential; the lower the overpotential, the more efficient the catalyst.

"It is now quite common in this field to make catalysts that can produce multicarbon products from CO2, but those processes typically operate at high overpotentials of 1 volt to attain appreciable amounts," said Yang, a senior faculty scientist at Berkeley Lab's Materials Sciences Division. "What we are reporting here is much more challenging. We discovered a catalyst for carbon dioxide reduction operating at high current density with a record low overpotential that is about 300 millivolts less than typical electrocatalysts."

Cube-like copper
The researchers characterized the electrocatalyst at Berkeley Lab's Molecular Foundry using a combination of X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy.

The catalyst consisted of tightly packed copper spheres, each about 7 nanometers in diameter, layered on top of carbon paper in a densely packed manner. The researchers found that during the very early period of electrolysis, clusters of nanoparticles fused and transformed into cube-like nanostructures. The cube-like shapes ranged in size from 10 to 40 nanometers.

"It is after this transition that the reactions to form multicarbon products are occurring," said study lead author Dohyung Kim, a graduate student in Berkeley Lab's Chemical Sciences Division and at UC Berkeley's Department of Materials Science and Engineering. "We tried to start off with pre-formed nanoscale copper cubes, but that did not yield significant amounts of multicarbon products. It is this real-time structural change from copper nanospheres to the cube-like structures that is facilitating the formation of multicarbon hydrocarbons and oxygenates."

Exactly how that is happening is still unclear, said Yang, who is also a professor at UC Berkeley's Department of Materials Science and Engineering.

"What we know is that this unique structure provides a beneficial chemical environment for CO2 conversion to multicarbon products," he said. "The cube-like shapes and associated interface may be providing an ideal meeting place where the carbon dioxide, water, and electrons can come together."

Many paths in the CO2-to-fuel journey
This latest study exemplifies how carbon dioxide reduction has become an increasingly active area in energy research over the past several years. Instead of harnessing the sun's energy to convert carbon dioxide into plant food, artificial photosynthesis seeks to use the same starting ingredients to produce chemical precursors commonly used in synthetic products as well as fuels like ethanol.

Researchers at Berkeley Lab have taken on various aspects of this challenge, such as controlling the product that comes out of the catalytic reactions. For instance, in 2016, a hybrid semiconductor-bacteria system was developed for the production of acetate from CO2 and sunlight. Earlier this year, another research team used a photocatalyst to convert carbon dioxide almost exclusively to carbon monoxide. More recently, a new catalyst was reported for the effective production of synthesis gas mixtures, or syngas.

Researchers have also worked on increasing the energy efficiency of carbon dioxide reduction so that systems can be scaled up for industrial use.

A recent paper led by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis leverages fundamental science to show how optimizing each component of an entire system can accomplish the goal of solar-powered fuel production with impressive rates of energy efficiency.

This new PNAS study focuses on the efficiency of the catalyst rather than an entire system, but the researchers point out that the catalyst can be hooked up to a variety of renewable energy sources, including solar cells.

"By utilizing values already established for other components, such as commercial solar cells and electrolyzers, we project electricity-to-product and solar-to-product energy efficiencies up to 24.1 and 4.3 percent for two-to-three carbon products, respectively," said Kim.

Kim estimates that if this catalyst were incorporated into an electrolyzer as part of a solar fuel system, a material only 10 square centimeters could produce about 1.3 grams of ethylene, 0.8 grams of ethanol, and 0.2 grams of propanol a day.

"With continued improvements in individual components of a solar fuel system, those numbers should keep improving over time," he said.

BIO FUEL
Re-engineering biofuel-producing bacterial enzymes
Washington DC (SPX) Sep 15, 2017
Converting fibrous plant waste, like corn stalks and wood shavings, into fermentable simple sugars for the production of biofuel is no simple process. Bacteria must break down tough leaves, stems and other cellulosic matter resistant to degradation to turn them into usable energy. Helping bacteria become more efficient in this process could result in more affordable biofuels for our gas ta ... read more

Related Links
Lawrence Berkeley National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Green Bank Network totals over $29 Billion for clean energy projects around the World

Antigua's well-built PV systems sustain impact of hurricane Irma

NREL investigates coatings needed for concentrating solar power

Scientists make atoms-thick Post-It notes for solar cells and circuits

BIO FUEL
Gazprom steals spotlight from Exxon Mobil

Iraqi Kurdistan, autonomous and oil-rich

Filter may be a match for fracking water

Balanced sentiment drives oil prices higher

BIO FUEL
Science denial not limited to political right

Canada Tory MP called out for referring to minister as 'climate Barbie'

US looks to work with Paris climate accord 'partners': Tillerson

Climate risk classification created to account for potential 'existential' threats

BIO FUEL
Graphene-wrapped nanocrystals make inroads towards next-gen fuel cells

UW shatters long-range communication barrier for near-zero-power devices

Researchers challenge status quo of battery commercialization

Stanford professor tests a cooling system that works without electricity

BIO FUEL
Researchers discover unique property of critical methane-producing enzyme

New biomaterial could replace plastic laminates, greatly reduce pollution

Re-engineering biofuel-producing bacterial enzymes

A new way to directly convert methane to methanol using gold-palladium nanoparticles

BIO FUEL
Carmakers face billions in European CO2 fines from 2021: study

Dockless bike-share hits US capital, following craze in China

Baidu announces $1.5 bln fund for autonomous driving

China rises at Frankfurt car show

BIO FUEL
Syngenta chief calls for debate on 'sustainable agriculture'

At Dubai expo, Chinese firms look to tap lucrative halal market

Research finds roots use chemical 'photos' to coordinate growth

Latvia tweets no room for mushroom hunters on army base

BIO FUEL
Corrosion in real time

Self-healing gold particles

'Naturally' glowing cotton yields dazzling new threads

Research team discovers 'rubber material' that could lead to scratch-proof paint for car




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement