Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



BIO FUEL
Convert methane to hydrogen without forming carbon dioxide at low-cost
by Staff Writers
Santa Barbara CA (SPX) Nov 28, 2017


Hydrogen Production with a Ni-Bi molten catalyst

As we work to toward more sustainable ways of powering our lifestyles, there is a quest to bridge the gap between the carbon dioxide-emitting fossil fuels we rely on for our most basic needs, and the cleaner, but not yet economically feasible alternative technologies.

To that end, a group at UC Santa Barbara has explored methods by which currently cheap and abundant methane (CH4) can be reduced to clean-burning hydrogen (H2) while also preventing the formation of carbon dioxide (CO2), a greenhouse gas. Its report, "Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon," appears in the journal Science.

"In the U.S., methane will be the heart of our economy for four or five decades, and figuring out ways to use it more sustainably is what motivates us," said UCSB chemical engineering professor Eric McFarland. "This paper was an interesting angle on something we've been looking at for a long time."

A product of both natural and man-made processes, methane - the primary component of natural gas - is an important source of fuel for cooking, heating and powering our homes and is used in manufacturing and transportation. As a waste product that is a more potent greenhouse gas than carbon dioxide, it is the target of many efforts to capture and reduce such emissions.

Steam methane reforming (SMR) has been commercialized for decades and is the most common process for producing commercial hydrogen. However, the researchers point out, SMR consumes significant amounts of energy and necessarily produces carbon dioxide, which is usually released into the atmosphere.

When the process was introduced, CO2 was not considered a problem. But as we became more greenhouse gas-conscious, it has grown into a global concern. The cost of operating the SMR process, and the potential additional costs of carbon taxes and carbon sequestration, puts hydrogen production by SMR at risk for significant cost increases - especially in smaller scale operations that might provide the hydrogen needed for fuel cell vehicles.

The UCSB team includes a longstanding collaboration on catalytic approaches to natural gas conversion between theoretical chemist and professor Horia Metiu and McFarland. Together with chemical engineering professor Michael Gordon, they began investigating the use of molten metals and molten salts as interesting and unexplored catalytic systems.

Metiu's theoretical work suggested that different combinations of metals in molten alloys might provide increased catalytic activity for converting methane into hydrogen and solid carbon. The researchers have developed a single-step method by which methane can be converted into hydrogen, which is not only simpler and potentially less expensive than conventional SMR methods, and results in a solid form of carbon that can be readily transported and stored indefinitely.

"You introduce a bubble of methane gas into the bottom of a reactor filled with this catalytically active molten metal," McFarland explained. "As the bubble rises, the methane molecules hit the wall of the bubble and they react to form carbon and hydrogen."

Eventually, he continued, by the time the methane bubble reaches the surface, it has broken down into hydrogen gas, which is released at the top of the reactor; carbon solids that float to the top of the liquid metal can then be skimmed off. Compared to conventional methods that rely on reactions that occur on solid surfaces, the molten metal alloy surfaces are not deactivated by the accumulation of carbon and can be reused indefinitely.

The combination of an active liquid metal and its solubility to hydrogen allows the melt to take up relatively more hydrogen and carbon than may be present in the gas bubbles. This allows the process to be efficient with very high-pressure methane to produce high-pressure hydrogen.

"You're really allowing yourself to pull all the products away from the reactants and that causes the equilibrium to be shifted toward the products. The process in principle can operate at high pressure and still get very high methane conversion," McFarland said.

The ecosystem for deploying this type of technology already exists, given existing infrastructure for processing hydrocarbons such as coal and natural gas, the current abundance of methane, and legislative and industry efforts to tighten up the capture of fugitive emissions, according to McFarland.

The research has captured the attention and support of Royal Dutch Shell, he added. The electricity produced from hydrogen derived by this zero-carbon dioxide process would be cheaper than current rates for solar energy, which, while ultimately more sustainable, is not cost competitive with fossil fuels today.

"If the entire world is wealthy, then wind and solar would be sufficiently low cost to be widely deployed, but it's not cheap enough for the world that we have today," McFarland said.

From an emissions standpoint, he continued, it is particularly important to deploy low-cost, low-emissions technologies in places such as China, currently the world's largest emitter of greenhouse gases. India and Africa, which have enormous and growing hydrocarbon consumptions, would benefit from such technology also; they are not rich enough yet to have the luxury of solar panels.

BIO FUEL
Cleaning Okinawan pig farm wastewater with microbial fuel cells
Onna, Japan (SPX) Nov 22, 2017
One of the greatest threats to the environment today is wastewater left over from production activities. Agricultural practices, such as pig farming, produce a large amount of wastewater containing organic contaminants, malodorous gases, and other substances that are damaging to the water supply. Usual methods of treating and recycling such wastewater include aeration, applying it as fertilizer ... read more

Related Links
University of California - Santa Barbara
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Burkina, France launch W.Africa's biggest solar plant

Improving solar cells by watching atoms move in hybrid perovskite crystals

Artificial photosynthesis gets big boost from new catalyst

Glass microparticles enhance solar cells efficiency

BIO FUEL
Half of hydraulically fractured wells within 3km of domestic groundwater systems

Libyan PM asks for easing of arms embargo

U.S. set to be net gas exporter for second year in a row

Norway sells foreign currencies in petroleum-related move

BIO FUEL
German judges agree to hear Peruvian's climate case against RWE

Europe backing climate ambitions with capital

Canada to explore trade, climate change fight, with China

Moroccans pray for rain as 'mercy from God'

BIO FUEL
New computational method provides optimized design of wind up toys

Statoil: Batteries can address wind power variability

Musk beats deadline for building world's biggest battery

Musk's record-breaking battery officially launches in Australia

BIO FUEL
Convert methane to hydrogen without forming carbon dioxide at low-cost

Cleaning Okinawan pig farm wastewater with microbial fuel cells

Brazilian ethanol can replace 13 percent of global crude oil consumption

The water world of ancient photosynthetic organisms

BIO FUEL
Norway puts brakes on plans for 'Tesla tax'

SoftBank offer for Uber shares to cut valuation: reports

Traffic-weary Chinese man fined for repainting road lines

Driverless, electric future just round the corner for urban cars

BIO FUEL
Istanbul anglers keep up tradition despite stocks alarm

Gene discovery may halt worldwide wheat epidemic

Genome of wheat ancestor sequenced

Fighting plant disease at warm temperatures keeps food on the table

BIO FUEL
New way to write magnetic info could pave the way for hardware neural networks

Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

X-rays reveal the biting truth about parrotfish teeth




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement