Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















BIO FUEL
Chemists ID catalytic 'key' for converting CO2 to methanol
by Staff Writers
Upton NY (SPX) Mar 27, 2017


Jingguang Chen and Jose Rodriguez (standing) discuss the catalytic mechanism with Ping Liu and Shyam Kattel (seated). Image courtesy Brookhaven National Laboratory.

Capturing carbon dioxide (CO2) and converting it to useful chemicals such as methanol could reduce both pollution and our dependence on petroleum products. So scientists are intensely interested in the catalysts that facilitate such chemical conversions. Like molecular dealmakers, catalysts bring the reacting chemicals together in a way that makes it easier for them to break and rearrange their chemical bonds. Understanding details of these molecular interactions could point to strategies to improve the catalysts for more energy-efficient reactions.

With that goal in mind, chemists from the U.S. Department of Energy's Brookhaven National Laboratory and their collaborators just released results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2. The results, published in the journal Science, resolve a longstanding debate about exactly which catalytic components take part in the chemical reactions-and should be the focus of efforts to boost performance.

"This catalyst-made of copper, zinc oxide, and aluminum oxide-is used in industry, but it's not very efficient or selective," said Brookhaven chemist Ping Liu, the study's lead author, who also holds an adjunct position at nearby Stony Brook University (SBU). "We want to improve it, and get it to operate at lower temperatures and lower pressures, which would save energy," she said.

But prior to this study, different groups of scientists had proposed two different active sites for the catalyst-a portion of the system with just copper and zinc atoms, or a portion with copper zinc oxide.

"We wanted to know which part of the molecular structure binds and breaks and makes bonds to convert reactants to product-and how it does that," said co-author Jose Rodriguez, another Brookhaven chemist associated with SBU.

To find out, Rodriguez performed a series of laboratory experiments using well-defined model catalysts, including one made of zinc nanoparticles supported on a copper surface, and another with zinc oxide nanoparticles on copper. To tell the two apart, he used an energetic x-ray beam to zap the samples, and measured the properties of electrons emitted. These electronic "signatures" contain information about the oxidation state of the atoms the electrons came from-whether zinc or zinc oxide.

Meanwhile Liu, Jingguang Chen of Brookhaven Lab and Columbia University, and Shyam Kattel, the first author of the paper and a postdoctoral fellow co-advised by Liu and Chen, used computational resources at Brookhaven's Center for Functional Nanomaterials (CFN) and the National Energy Research Scientific Computing Center (NERSC)-two DOE Office of Science User Facilities-to model how these two types of catalysts would engage in the CO2-to-methanol transformations.

These theoretical studies use calculations that take into account the basic principles of breaking and making chemical bonds, including the energy required, the electronic states of the atoms, and the reaction conditions, allowing scientists to derive the reaction rates and determine which catalyst will give the best rate of conversion.

"We found that copper zinc oxide should give the best results, and that copper zinc is not even stable under reaction conditions," said Liu. "In fact, it reacts with oxygen and transforms to copper zinc oxide."

Those predictions matched what Rodriguez observed in the laboratory. "We found that all the sites participating in these reactions were copper zinc oxide," he said.

But don't forget the copper.

"In our simulations, all the reaction intermediates-the chemicals that form on the pathway from CO2 to methanol-bind at both the copper and zinc oxide," Kattel said. "So there's a synergy between the copper and zinc oxide that accelerates the chemical transformation. You need both the copper and the zinc oxide."

Optimizing the copper/zinc oxide interface will become the driving principal for designing a new catalyst, the scientists say.

"This work clearly demonstrates the synergy from combining theoretical and experimental efforts for studying catalytic systems of industrial importance," said Chen. "We will continue to utilize the same combined approaches in future studies."

For example, said Rodriguez, "We'll try different configurations of the atoms at the copper/zinc oxide interface to see how that affects the reaction rate. Also, we'll be going from studying the model system to systems that would be more practical for use by industry."

An essential tool for this next step will be Brookhaven's National Synchrotron Light Source II (NSLS-II), another Office of Science User Facility. NSLS-II produces extremely bright beams of x-rays-about 10,000 times brighter than the broad-beam laboratory x-ray source used in this study. Those intense x-ray beams will allow the scientists to take high-resolution snapshots that reveal both structural and chemical information about the catalyst, the reactants, and the chemical intermediates that form as the reaction occurs.

"And we'll continue to expand the theory," said Liu. "The theory points to the mechanistic details. We want to modify interactions at the copper/zinc oxide interface to see how that affects the activity and efficiency of the catalyst, and we'll need the theory to move forward with that as well."

BIO FUEL
Community in chaotic Jakarta goes green to fight eviction
Jakarta (AFP) March 20, 2017
Brightly coloured wooden and brick houses line a clean riverside path amid trees and vegetable gardens, a tranquil scene in the normally chaotic Indonesian capital Jakarta. Residents have transformed the "kampung", as traditional neighbourhoods are known in Indonesia, into a model of clean and green living in an effort to fight off the threat of eviction. Tongkol kampung was once much ... read more

Related Links
Brookhaven National Laboratory
Bio Fuel Technology and Application News

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Artificial photosynthesis steps into the light

Nanomaterials that makes harvesting sunlight easier

New Stanford study calls for US solar policy reform

First Solar to deliver 48Mw Manildra solar farm

BIO FUEL
Chevron makes LNG headway

Moscow sees Arctic oil as an option

Novel oil spill cleanup technology tested

West Africa oil potential growing

BIO FUEL
Mega-wind farm offshore Denmark clears hurdle

Japan scientist eyes energy burst from 'typhoon turbine'

North Carolina offshore wind hailed as job creator

North Carolina ready for offshore wind energy auction

BIO FUEL
Clarifying how lithium ions ferry around in rechargeable batteries

Building a market for renewable thermal technologies

New gel-like coating beefs up the performance of lithium-sulfur batteries

Non-toxic material that generates electricity through hot and cold

BIO FUEL
Toshiba's US nuclear unit files for bankruptcy protection

Japan high court rules nuclear reactors can restart

Loss-hit Toshiba nosedives on fears about future

The EIC and Nuclear AMRC sign MoU

BIO FUEL
Uber putting self-driving cars back on the road

Mercedes, VW recall million vehicles in China

India court bans sale of 800,000 vehicles over emission levels

London, Paris, Seoul launch 'name-and-shame' polluting car index

BIO FUEL
Brazil tainted meat: Three key markets resume imports

New Zealand's 'green' image under threat: OECD

Almond-crop fungicides are harmful to honey bees

China bans Brazil meat in health scare: Brasilia

BIO FUEL
Researchers make flexible glass for tiny medical devices

Promising results obtained with a new electrocatalyst that reduces the need for platinum

NASA Selects High Performance Spaceflight Computing (HPSC) Processor Contract

Invention May Give Spacecraft Improved Damage Report




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement